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Abstract
Breast cancer stem cells (BCSCs) are potent tumor-initiating cells in breast cancer, the most

common cancer among women. BCSCs have been suggested to play a key role in tumor

initiation which can lead to disease progression and formation of metastases. Moreover,

BCSCs are thought to be the unit of selection for therapy-resistant clones since they survive

conventional treatments, such as chemotherapy, irradiation, and hormonal therapy.

The importance of the role of hormones for both normal mammary gland and breast cancer

development is well established, but it was not until recently that the effects of hormones

on BCSCs have been investigated. This review will discuss recent studies highlighting how

ovarian steroid hormones estrogen and progesterone, as well as therapies against them,

can regulate BCSC activity.
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Breast cancer stem cells

The cancer stem cell (CSC) theory proposes a hierarchical

organization of the cells within a tumor, where only a

small subset of cells, the CSCs, is believed to drive and

sustain tumor growth. CSCs are defined as self-renewing

tumor-initiating cells (TICs), which would implicate them

in tumor relapse and resistance to therapy, making them

an important therapeutic target (Reya et al. 2001).

The first report establishing the presence of breast

CSCs (BCSCs) discovered that CD44CCD24K/lowESACli-

neageK (named CD44CCD24K henceforth) cells, isolated

from human breast tumors by FACS, were enriched for

tumor-initiating capacity in immuno-compromised mice

(Al-Hajj et al. 2003). CD44CCD24K cells can be serially

passaged and form tumors containing both tumorigenic

cells (CD44CCD24K) and non-tumorigenic cells. Breast

cancers with high levels of CD44 and low levels of CD24

have been associated with the triple negative phenotype

(i.e. lacking estrogen receptor (ER), progesterone receptor
(PR), and HER2 expression) and inferior overall survival

(Liu et al. 2007, Honeth et al. 2008).

Besides isolation of CD44CCD24K cells, other

strategies have been used to identify populations enriched

for BCSC activity. Mammosphere formation, high alde-

hyde dehydrogenase (ALDH) activity, capacity to retain

PKH26 dye or ability to efflux lipophilic dyes (side

population (SP)), are all examples of properties that have

been used to isolate these TICs. The mammosphere colony

assay relies on the ability of BCSCs to survive in non-

adherent serum-free culture conditions and form individ-

ual spherical colonies, called mammospheres (Dontu et al.

2003, Ponti et al. 2005, Farnie et al. 2007). On the other

hand, the activity of ALDH1, which oxidizes intracellular

aldehydes, is detected by an enzymatic assay (ALDE-

FLUOR) and flow cytometric analysis (Ginestier et al.

2007). The proportion of cells expressing ALDH1 in breast

tumors has been shown to correlate with poor clinical

outcome (Ginestier et al. 2007, Charafe-Jauffret et al. 2010).
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The PKH26 dye, which labels quiescent cells, has also been

used to identify BCSCs in primary breast tumors by FACS

sorting cells expressing CD49f, DLL1, and DNER (Pece

et al. 2010). Hoechst dye exclusion activity has also been

described as a method to identify a cellular fraction termed

the SP that contains tumorigenic stem/progenitor cells

(Patrawala et al. 2005). Finally, an autofluorescent epi-

thelial CSC phenotype has recently been reported,

however it still remains to be proven whether it can be

used to identify BCSCs (Miranda-Lorenzo et al. 2014).

There remains a lack of consensus as to the most

robust method for the purification of BCSCs. The

establishment of bona fide BCSC markers is hindered by

breast cancer intra-tumor and inter-tumor heterogeneity

of its cell populations. Nevertheless, the two most widely

used cell populations to enrich for BCSCs are

CD44CCD24K and ALDHC.

A recent study reported that these two cell popu-

lations identify BCSCs in different states with gene

expression profiles resembling cells with either mesench-

ymal (CD44CCD24K cells) or epithelial characteristics

(ALDHC cells) (Liu et al. 2014). Moreover, this study

identified a small overlapping population of cells that

is both CD44CCD24K and ALDHC, and suggested that

BCSCs display cellular plasticity by dynamically switching

between the mesenchymal and epithelial states. This

epithelial–mesenchymal transition or vice-versa (mesench-

ymal–epithelial transition) is believed to be determined by

the tumor microenvironment, with factors like hypoxia or

transforming growth factor beta playing a key role in this

process (Thiery 2002, Yang et al. 2008). It is feasible that

other signaling factors that have been reported to

modulate BCSC activity, such as hormones, may also

influence this dynamic state.

In this review, we will discuss what is known about the

regulation of BCSC function by the steroid hormones

estrogen and progesterone and their antagonists.
Estrogen and BCSCs

Estrogen is essential for the development of normal breast

epithelium by promoting epithelial cell proliferation and

ductal morphogenesis but also plays an important role

in the growth of most breast cancers through their

expression of ER (Bocchinfuso & Korach 1997, Colditz

1998). Epidemiological evidence suggests that breast

cancer risk is positively associated with post-menopausal

levels of estrogen (Clemons & Goss 2001). Estrogen effects

are mainly mediated through binding to two nuclear

ligand-activated transcription factors, the ERs ERa and
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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ERb, which then bind estrogen-responsive elements in the

DNA to regulate the transcription of target genes (Yager &

Davidson 2006). In the normal breast, ERa is found in

luminal epithelial cells, but not in the stroma, whereas

ERb has been shown to be expressed in both luminal and

myoepithelial cells, as well as stromal cells, such as

fibroblasts and endothelial cells (Petersen et al. 1987,

Speirs et al. 2002). ERa, which has a higher affinity to the

physiological form of estrogen, 17b-estradiol, than ERb,

has been shown to be the major mediator of estrogen

action (Bocchinfuso & Korach 1997, Kuiper et al. 1998).

ERa (named ER henceforth) is a key regulator of breast

cancer and its expression status is currently used together

with other receptors in the classification of breast cancer

subtypes. ERC tumors are strongly associated with the

luminal subtype and are generally characterized by

expression of luminal differentiation markers (Perou

et al. 2000).

Although the importance of estrogen in breast cancer

is well established, the effects of estrogen on BCSCs are not

fully understood and are still a matter of debate (Simões &

Vivanco 2011). Estrogen may exert influence on stem cells

via paracrine mechanisms because CD44CCD24K and

ALDHC CSCs have been shown to lack expression of ER or

express it at very low levels (Morimoto et al. 2009, Harrison

et al. 2013, Simões et al. 2015). Similar to what happens in

the normal mammary gland, it has been suggested that

estrogen can promote CSC activity of ERK BCSCs by

inducing the secretion of paracrine growth factors from

ERC cells. Fibroblast growth factor (FGF)/Tbx3 signalling,

as well as epidermal growth factor (EGF) and Notch

receptor signalling pathways, have been reported to

control this paracrine mechanism and induce the expan-

sion of CD44CCD24K CSCs (Fillmore et al. 2010, Harrison

et al. 2013). In contrast to these findings, estrogen was

shown to reduce the self-renewal capacity of MCF7 BCSCs

by promoting differentiation through down-regulation of

embryonic stem cell genes NANOG, OCT4, and SOX2

(Simões et al. 2011). These contradictory results may be

due to differences in the methods used in these studies.

Fillmore et al. and Harrison et al. exposed breast cancer

cells grown in monolayer adherent culture (not enriched

for CSCs) to estrogen whereas Simões et al. challenged

BCSCs with estrogen by growing cells in non-adherent

mammosphere culture conditions. Therefore, opposing

effects of estrogen on CSC activity seem to be determined

by the context in which the cells are cultured and by the

analysis of different breast cancer cell populations.

The role of estrogen in clinical breast carcinogenesis is

also contradictory. Whereas high levels of endogenous
Published by Bioscientifica Ltd.
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estrogens increase the risk of postmenopausal breast

cancer, randomised trials of exogenous estrogen alone

(hormone replacement therapy) show it to reduce the

incidence and mortality of breast cancer (Women’s Health

Initiative) (LaCroix et al. 2011). This finding is similar to

animal models where short-term treatment with preg-

nancy levels of estrogen can prevent the formation of

mammary tumors (Rajkumar et al. 2001). This anti-cancer

effect of estrogen has been suggested to explain the breast

cancer preventative potential of early full-term pregnancy

to lifetime breast cancer risk, although this cannot be

attributed solely to estrogen levels given the complexity of

pregnancy associated endocrine perturbation (Medina

2004). Hypothetically, the protective effect of estrogen

may be due to breast stem cell differentiation during

pregnancy and lactation, which would reduce the number

of stem cells that could be precursors of cancer (Russo et al.

2005, Simões & Vivanco 2011). To add further complexity

to the role of estrogen in breast cancer, higher doses have

been used for many years to treat advanced disease, with

response rates similar to those seen with the anti-estrogens

(Ellis et al. 2009, Lewis-Wambi & Jordan 2009). Without

doubt, more studies are needed to explore the complex-

ities of estrogen signalling, stem cells and breast cancer

risk and progression.
Endocrine resistance: biomarkers,
up-regulated pathways, and BCSCs

Around 75% of breast cancers express ER and are treated

with anti-estrogen adjuvant therapies to suppress ER

mediated estrogen signaling and, therefore, inhibit

proliferation of ERC breast cancer cells (Ali & Coombes

2002). There are three main classes of anti-estrogen drugs

that target and modulate ER activity: selective ER

modulators (SERMs), aromatase inhibitors (AIs), and

selective ER down-regulators (SERDs). The most common

and successful SERM is tamoxifen, which prevents the

effects of estrogen by competing for the ER ligand-binding

site (Shiau et al. 1998). AIs block the function of

aromatase, the enzyme that catalyses the last step of

estrogen biosynthesis (Mokbel 2002). Tamoxifen and AIs

are the endocrine therapies of choice in the adjuvant

treatment of premenopausal and postmenopausal women

respectively (Beelen et al. 2012). These and other anti-

estrogens, such as the SERD fulvestrant, which binds ER

and targets it for degradation through ubiquitination, are

used sequentially in advanced breast cancer (Howell et al.

2004). Endocrine sensitivity can partly be predicted by

serial analysis of the proliferation marker Ki67 expression
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0350 Printed in Great Britain
in pre-surgical ‘window’ studies or longer term neoadju-

vant studies of several months of treatment (Dowsett et al.

2011). More recently, a four-gene signature including

genes related to immune signalling (IL6ST), apoptosis

(NGFRAP1), and proliferation (ASPM and MCM4) was

reported to predict the clinical response of patients treated

with AIs (Turnbull et al. 2015). However, despite the

undoubted success of tamoxifen (or similar endocrine)

treatment, at least half of patients with micrometastatic

disease will relapse despite therapy, often many years after

initial surgery and endocrine therapy is completed (Early

Breast Cancer Trialists’ Collaborative Group et al. 2011).

Such endocrine resistance compromises this otherwise

effective treatment and thus the potential cure of ERC

breast cancers. Therefore, defining the mechanisms of

endocrine resistance is a major research focus. Activation of

classical signalling pathways, including the ones induced

by HER2 and EGF receptor (EGFR), MAPK, and PI3K/AKT

have been implicated in hormone resistance (Musgrove &

Sutherland 2009). However, the only approved targeted

therapies to improve outcomes of endocrine-resistant ERC

HER2K breast cancers are the mTOR inhibitor everolimus

and the CDK4/6 inhibitor palbociclib combined with an AI

or fulvestrant (Baselga et al. 2012, Finn et al. 2015, Turner

et al. 2015). Therefore, a better understanding of the

molecular changes associated with endocrine resistant

growth is urgently needed to find treatments that can

inhibit or delay the emergence of resistance.

BCSCs, which can survive for long periods in a

dormant state, may be associated with tumor recurrence

and metastases. These cells have been shown to be more

resistant to chemo- and radio-therapies than non-CSCs

(Phillips et al. 2006, Li et al. 2008). In endocrine therapy,

accumulating evidence suggests that there is an increase in

BCSCs in ERC breast cancer following anti-estrogen

treatment. Two studies have reported enrichment for

cells with both BCSC gene and marker expression in breast

tumor tissue following short term AI (letrozole) or

tamoxifen treatment (Creighton et al. 2010, Kabos et al.

2011). Additionally, other studies demonstrated similar

effects in ERC breast cancer cell lines. For example,

tamoxifen treatment increased both the number of

mammospheres and the expression of NANOG, OCT4,

and SOX2 in MCF7 breast cancer cells (Simões et al. 2011,

Piva et al. 2014). MCF7 mammospheres were also shown to

be resistant to high doses of tamoxifen (Cariati et al. 2008).

Moreover, tamoxifen, fulvestrant, or estrogen deprivation

increased the percentage of cells expressing cytokeratin 5

(CK5), a marker of human breast stem/progenitor cells also

found in BCSCs, in T47D breast cancer cells (Creighton
Published by Bioscientifica Ltd.
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et al. 2010, Kabos et al. 2011). These data confirm that,

while endocrine therapies target the differentiated pro-

liferative breast cancer cells, they cannot effectively target

the BCSCs.

Stem cell activity in ERC tumors is mainly due to a

minority population of ERK cells, which cannot be

directly targeted by anti-estrogens and therefore might

be responsible for resistance and recurrence (Harrison et al.

2013, Simões et al. 2015). Indeed, circulating tumor cells of

ERC primary tumors are in general found to be ERK (Fehm

et al. 2009). In the clinic, ER negativity is associated with

poor prognosis, precluding a response to all categories of

anti-estrogen treatment and associating with a more

aggressive and proliferative phenotype. Interestingly,

expression of putative regulators of ERK BCSC activity

like EGFR (Harrison et al. 2013), HER2 (Ithimakin et al.

2013), and FGF receptor (Fillmore et al. 2010), potentially

resulting from selection of cells with a more stem-like

phenotype have been associated with acquisition of

endocrine resistance (McClelland et al. 2001, Hutcheson

et al. 2003, Knowlden et al. 2003). Recently, the ER splice

variant ERa36, which lacks both transactivation domains

AF1 and AF2, was associated with BCSC regulation and

endocrine resistance (Wang et al. 2005, Deng et al. 2014).

Specifically, Deng et al. showed ERa36 to be essential for

CD44CCD24K BCSC enrichment induced by tamoxifen or

fulvestrant. ERa36 is reported to be located in the cellular

membrane and cytoplasm, and to rapidly activate

MAPK/ERK signalling in the presence of estrogen.

However, future studies are needed to better understand

the importance of ERa36 isoform in BCSCs maintenance

(Wang et al. 2006).

The potential involvement of BCSCs in endocrine

resistance makes it imperative to understand the cellular

signalling pathways that could be targeted to eradicate

BCSCs and provide long-term disease-free survival. It has

been established that these cells are dependent upon

developmental signalling pathways, which may provide

suitable targets for therapeutic intervention (reviewed in

Visvader & Lindeman (2012)). For example, activation of

Wnt signalling due to high expression levels of stem cell

marker SOX2 has been reported as an important tamox-

ifen-resistance mechanism (Piva et al. 2014). Another

strong candidate for endocrine-resistant CSC regulation

is the Notch pathway, which comprises four different

transmembrane receptors (Notch1–4), five known surface-

bound ligands (Delta-like 1, Delta-like 3, Delta-like 4,

Jagged 1, and Jagged 2) and multiple transcriptional

targets, including the Hes and Hey family of genes

(Brennan & Brown 2003). It was previously shown that
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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aberrant Notch activation is found in human breast

cancers and correlates with recurrence within 5 years in

ductal carcinoma in situ (DCIS) lesions (Stylianou et al.

2006, Farnie et al. 2007). Moreover, it was established that

inhibition of the Notch signalling pathway reduces BCSC

activity, and that the Notch4 receptor has a key role in

controlling BCSCs (Harrison et al. 2010). Recently, our

group demonstrated that treating ERC breast cancer cells

with endocrine therapies leads to increased Jag1–Notch4

signalling and that combining endocrine therapies with a

Notch pathway inhibitor can prevent BCSC enrichment

induced by endocrine therapies (Simões et al. 2015). Our

results suggest that inhibition of Notch signalling can help

overcoming endocrine therapy resistance and might

prevent recurrence in ERC breast cancer. Importantly,

we also showed that both Notch4 activation and high

expression of BCSC marker ALDH1 in patient primary

tumors are predictors of resistance to endocrine treat-

ments (Simões et al. 2015).

In summary, we speculate that BCSCs evade endocrine

therapies, lie dormant and eventually re-initiate tumors

in metastatic sites after treatment. Thus, BCSC-targeted

therapies in combination with established anti-estrogens

are likely to improve outcomes for breast cancer patients.
Progesterone and BCSCs

Progesterone has been shown to be vital for both pubertal

side branching and lobular alveolar development of the

mammary gland during pregnancy (Lydon et al. 1995,

Brisken 2013). Importantly, in premenopausal women

breast epithelial cell proliferation is highest in the

progesterone dominant luteal phase of the menstrual

cycle (Potten et al. 1988, Navarrete et al. 2005). Studies

in mice have shown that mammary gland development

results from progesterone-induced expansion of the mam-

mary stem cell pool and have also shown that PR is

important for carcinogen-induced mammary tumor for-

mation (Lydon et al. 1999, Asselin-Labat et al. 2010, Joshi

et al. 2010). In normal human breast cells, progesterone

stimulation in matrix-embedded culture increased

bipotent progenitor cell numbers (Graham et al. 2009).

The progesterone signal is mediated by the PR, which

comprises two isoforms (PRA and PRB) that are only

differentiated by a third activation function domain on

the 5 0 end of PRB (Kastner et al. 1990). The two isoforms

are generally co-expressed at similar levels in the normal

breast but the ratio can be altered in human breast tumors,

resulting in a predominance of one particular isoform,

usuallyPRA,over its counterpart (Graham et al. 2005,2009).
Published by Bioscientifica Ltd.
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Isoform-specific mouse mutants reveal that PRB is the

functionally important form in mammary gland morpho-

genesis, whereas PRA is important for ovarian function

(Mulac-Jericevic et al. 2000, 2003). These isoforms display

only partially overlapping transcriptional signatures with

PRB modulating expression of significantly more genes

than PRA (Richer et al. 2002). Relative loss of PRB is seen

with the development of atypia or malignancy and in

women with germline mutations in BRCA1 or BRCA2 (Mote

et al. 2002). Interestingly, women with such mutations

have double the serum progesterone levels compared to age

matched WT controls although the significance of this

finding is not known (Widschwendter et al. 2013).

In the normal mammary tissue, progesterone-induced

gland expansion is mediated through paracrine prolifera-

tive signals, including receptor activator of nuclear

factor-kappa B ligand (RANKL) and WNT4, secreted from

PRC sensor cells and acting on PRK stem cells, expressing

the RANK receptor and Wnt receptors, such as Frizzled

(FZD) and LRP5/6 (Graham et al. 2009, Gonzalez-Suarez

et al. 2010, Joshi et al. 2010). In multiple rodent models,

deletion or inhibition of PR or the RANK/RANKL pathway

results in significant reduction in mammary carcinogenesis

(Lydon et al. 1999, Poole et al. 2006, Gonzalez-Suarez et al.

2010, Schramek et al. 2010). Recent evidence has estab-

lished CXCR4 receptor and its ligand CXCL12 as potential

key mediators of progesterone-induced stem/progenitor

cell functions in normal mammary gland (Shiah et al.

2015). CXCL12 is localized on PRC luminal cells whereas

CXCR4 is induced by progesterone in both basal and

luminal PRK cells. Significantly, Shiah et al. showed

that inhibition of CXCR4–CXCL12 signalling is able to

arrest the progesterone-induced expansion of mammary

stem/progenitor cells. Finally, it has been demonstrated

recently that progesterone induces growth hormone (GH)

secretion in human breast epithelial cells, which increases

proliferation of GH receptor (GHR) positive stem/

progenitor breast cells (Lombardi et al. 2014).

In an analogous manner progesterone has been shown

to expand the population of BCSCs in breast cancer cell

lines. In particular, progesterone was shown to increase

the population of CK5C and CD44hi or CD44CCD24K

BCSCs in several ERCPRC cell lines but particularly in

T47D cells, which express high levels of PR even in the

absence of estrogen (Axlund et al. 2013, Finlay-Schultz

et al. 2014, Hilton et al. 2014). Importantly, in cell lines

where PR expression is dependent on estrogen, cells need

to be treated with estrogen and progesterone, while

estrogen alone was not able to induce BCSCs.
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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The mechanisms behind the progesterone-induced

expansion of BCSCs have not been fully elucidated.

However, progesterone treatment of cell lines has been

shown to repress miR-29 and miR-141, de-repressing KLF4

and STAT5A respectively (Cittelly et al. 2013, Finlay-

Schultz et al. 2014). In both studies, this resulted in

expansion of the CK5C/CD44C CSC population and

enhancement of colony formation and tumor initiating

capacity. KLF4 is a transcription factor required for

maintenance of both BCSCs (Yu et al. 2011) and pluripo-

tency in embryonic stem cells (Zhang et al. 2010) whereas

STAT5A is a transcription factor that regulates the

mammary luminal progenitor population (Yamaji et al.

2009). BCL6, which appears to be critical in the mainten-

ance of some leukaemic stem cells, was also reported to be

essential for progesterone-induction of CK5C cells (Hurtz

et al. 2011, Sato et al. 2014). Interestingly, the progesterone-

induced expression of BCL6 was inhibited by prolactin,

further demonstrating the complex interplay between

hormonal signalling axes in the regulation of BCSCs (Sato

et al. 2014). It is also possible that PRC cells communicate

with PRK BCSCs through similar paracrine pathways as in

the normal mammary gland. Indeed, non-endogenous

overexpression of RANK in human breast cell lines induces

stemness by increasing the CD44CCD24K BCSC popu-

lation, promoting tumour initiation and metastasis

(Palafox et al. 2012). However, clinical trials of the RANKL

inhibitor denosumab do not show any improvement in

cancer control or survival despite their valuable role in

reducing skeletal complications from bone metastases.

In summary, this evidence suggests that progesterone is

responsible for the expansion of both normal and breast

cancer stem cells but that the precise mechanisms may be

divergent. However, both the PR itself and some of the

paracrine/downstream signals described are targetable and

may hold promise as breast cancer therapies.
Anti-progesterone drugs and BCSCs

Women’s Health Initiative study reports that

combination of estrogen with progestin (synthetic

progesterone derivative), but not estrogen alone was

associated with greater breast cancer incidence and

mortality (Chlebowski et al. 2010). The progesterone role

in mammary tumorigenesis may be explained by the

expansion of stem cell populations, which are likely to

originate BCSCs and lead to the formation of ERCPRC

tumors (Narod 2011).

Despite much promise in the early 1990s, no

anti-progestin is a recommended standard of care in
Published by Bioscientifica Ltd.
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Figure 1

Schematic representation of paracrine and juxtacrine signals involved in

estrogen and progesterone regulation of BCSCs. Estrogen and pro-

gesterone bind estrogen receptor (ER) and progesterone receptor (PR)

nuclear transcription factors, respectively, regulating expression of target

genes. Estrogen sensor cells (non-BCSCs) increase transcription of

epidermal growth factor (EGF), amphiregulin (AREG), transforming growth

factor alpha (TGFa), and fibroblast growth factor (FGF), which will signal to

the BCSCs through the EGFRs and FGFRs. Non-BCSCs can also signal to the

BCSCs via Notch signalling. Progesterone sensor cells (non-BCSCs) also

increase transcription of several important signalling factors. Progesterone

regulation of BCSCs may occur via activation of RANK/RANKL, Wnt

receptors/Wnt4, CXCR4/CXCL12, and GHR/GH paracrine signalling (dashed

lines). Estrogen and progesterone-induced signals can be blocked by

anti-estrogens (e.g. tamoxifen and fulvestrant) and anti-progesterone

drugs (e.g. mifepristone and onapristone).
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anti-cancer treatment. However, there is a renewed

interest in anti-progestin drugs indicated by several current

clinical trials using mifepristone and onapristone in breast

cancer and other solid tumors (see NCT01493310,

NCT02014337, NCT02046421, NCT02049190, and

NCT02052128 on US clinical trials database, https://

clinicaltrials.gov/). Based on recent research, it is possible

that these drugs target BCSCs in ERCPRC tumors, although

this remains hypothetical and merits further investigation.
Conclusions

The published data suggests that in breast cancer both

estrogen and progesterone signalling have multifarious

effects on CSC activity. Since BCSCs are reported to be

low or negative for steroid hormone receptors, the effects

are likely to be mainly indirect, transmitted through
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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paracrine or juxtacrine cell–cell signalling pathways

(Fig. 1). We do not exclude the possibility that there is

some autocrine signalling downstream of hormones that

may contribute to regulation of BCSCs. The effects of

estrogen and progesterone have only been partially

described in cancer tissues. For progesterone in particular

there is more data from normal mammary epithelium

than from cancer tissues.

For estrogen, there are reports that following in vitro

treatment of serum-starved breast cancer cells, CSC

activity is stimulated and that this requires regulation by

EGF, FGF, or Notch1 receptors, suggesting indirect,

paracrine or juxtacrine signalling between cells (Fig. 1).

On the other hand, anti-estrogens, such as tamoxifen or

fulvestrant, block direct effects of estrogens on cell growth,

and the indirect signals to the ERK BCSCs. Paradoxically

however, tamoxifen has been demonstrated to increase
Published by Bioscientifica Ltd.
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BCSC activity in mammosphere colony culture (Simões

et al. 2011, Piva et al. 2014), and more recently, the same

has been confirmed for both tamoxifen and fulvestrant

in vivo (Simões et al. 2015). The data suggest that while

anti-estrogens are cytostatic for the ERC cells, there is an

increase in the proportion of ERK BCSCs and their activity.

This increase could be due to selective enrichment by

treatment, by induction of a change in cellular phenotype

from ERC non-BCSC to ERK BCSC, or possibly a

combination of both of these effects. Whatever the reason,

the mechanism for the increase induced by anti-estrogens

is reported to be Jag1–Notch4 signalling between ERK

BCSCs (Simões et al. 2015), rather than the signals from

the ERC cell shown here (Fig. 1).

For progesterone, the data are clear it has a role in

regulating the expansion of normal mammary stem and

progenitor cells through several signalling pathways

including CXCL12/CXCR4, GH/GHR, WNT4/FZD, and

RANKL/RANK. In breast cancer, there are cell line data

suggesting that progesterone may regulate BCSCs but the

importance of the previous signalling networks is not

established (Fig. 1). Since progesterone does not directly

stimulate proliferation in most breast cancers, the role for

anti-progesterone drugs in breast cancer may be to

abrogate progesterone effects on BCSC activities, although

this is yet to be proven.

In summary, the data accumulated thus far indicate

that estrogen and progesterone have mostly indirect

effects on BCSCs since they are mainly ERK and PRK

cells. Results from both normal and malignant epithelial

cell–cell interactions suggest that estrogen and proges-

terone elicit these effects through different paracrine/

juxtacrine regulatory pathways. Finally, since there are

several putative pathways downstream of each estrogen

and progesterone, there will be interactions and redun-

dancy between these, yielding a subtle complexity in the

consequences for the BCSC.
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