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Abstract
Pheochromocytomas and paragangliomas (PPGL) are rare neuroendocrine neoplasms that

derive from small paraganglionic tissues which are located from skull base to the pelvic floor.

Genetic predisposition plays an important role in development of PPGLs. Since the discovery

of first mutations in the succinate dehydrogenase D (SDHD) gene, which encodes the

smallest subunit of mitochondrial complex II (SDH), genetic studies have revealed a major

role for mutations in SDH subunit genes, primarily in SDHB and SDHD, in predisposition to

both familial and non-familial PPGLs. SDH-mutated PPGLs show robust expression of hypoxia

induced genes, and genomic and histone hypermethylation. These effects occur in part

through succinate-mediated inhibition of a-ketoglutarate-dependent dioxygenases.

However, details of mechanisms by which SDH mutations activate hypoxic pathways and

trigger subsequent neoplastic transformation remain poorly understood. Here, we present

a brief review of the genetic and mechanistic aspects of SDH-mutated PPGLs.
Key Words

" pheochromocytoma

" neuroendocrine tumors

" neoplasia

" molecular genetics

" molecular biology
n o
for
Endocrine-Related Cancer

(2015) 22, T71–T82
Introduction
Paragangliomas are neuroendocrine neoplasms that may

arise from parasympathetic or sympathetic paraganglia. In

general, those arising from parasympathetic paraganglia

are non-secretory, associated with head and neck para-

ganglia and are usually referred to as head and neck

paragangliomas (HNPGL), or more specifically ‘carotid

paraganglioma’, ‘jugulotympanic paraganglioma’, etc.,

rather than by older terms such as ‘chemodectoma’ or

‘glomus jugulare’. Paragangliomas arising from sym-

pathetic nervous system paraganglia usually arise in the

abdomen and thorax, and secrete catecholamines
(Tischler 2008). Thus they are functionally and histolo-

gically similar to pheochromocytomas (in older literature

they were often described as extra-adrenal pheochromo-

cytomas). Occasionally HNPGL can also secrete catechol-

amines (Erickson et al. 2001).

Familial HNPGL was first described more than 80 years

ago (Chase 1933), and 25 years ago evidence of autosomal

dominant inheritance with parent of origin effects

(tumors were only manifest after paternal transmission,

Fig. 1) was reported (van der Mey et al. 1989). Ten years

later, Baysal et al. (2000) reported the seminal finding that
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Figure 1

Sample family tree illustrating how disease can be hidden within families

due to maternal imprinting of the SDHD gene. The susceptibility gene is

carried and transmitted by females but only manifests as disease when

inherited from a father.
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Figure 2

Schematic structure of SDH subunits is shown. SDH is comprised of four

structural subunits encoded by SDHA, SDHB, SDHC, and SDHD. The SDHC

and SDHD gene products are hydrophobic, sandwich a heme moiety and

span the inner mitochondrial membrane. The SDHA and SDHB gene

products are cytosolic and contain a covalently bound FAD and three

iron–sulfur clusters respectively. Germ line mutations in SDHAF2 (SDH5),

which encode a non-structural assembly protein critical for flavination of

the SDHA gene product, also predispose to PPGL.
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familial HNPGL was associated with germline mutations

in succinate dehydrogenase D (SDHD; PGL1 locus) and

subsequently, SDHD mutations were also demonstrated to

be associated with sporadic and familial pheochromocy-

toma (Gimm et al. 2000, Astuti et al. 2001a). SDHD encodes

the D subunit of the SDH heteterotetrameric enzyme that,

together with SDHC, anchors the SDH complex to the inner

mitochondrial inner membrane. SDH has critical roles in

the Krebs cycle and respiratory chain electron transport (as

part of mitochondrial complex II, Fig. 2). The SDHB gene

product, containing three iron–sulfur clusters, is part of the

hydrophilic catalytic domain and binds to the SDHA gene

product that contains a covalently attached flavin adenine

dinucleotide (FAD) co-factor and the substrate binding site.

SDHB and SDHD gene products bind to each other and

attach the complex II holoenzyme to the mitochondrial

inner membrane. Soon after the associations of SDHD

mutations with human disease, germline SDHC (PGL3)

mutations were reported to cause familial HNPGL (inher-

ited as an autosomal dominant trait without parent-

of-origin effects) (Niemann & Muller 2000) and germline

SDHB (PGL4) mutations were found to cause inherited

susceptibility to HNPGL and pheochromocytomas and

paragangliomas (PPGL) (Astuti et al. 2001b). Subsequently

germline mutations in the SDH-associated protein

SDHAF2 were found to be a rare cause of HNPGL

(Hao et al. 2009, Bayley et al. 2010) and SDHA mutations,

initially reported in the context of an autosomal recessive
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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juvenile encephalopathy (Bourgeron et al. 1995), were

demonstrated to be a rare cause of (dominantly inherited)

predisposition to PPGL (though penetrance appears to be

very low) (Burnichon et al. 2010). Though germline

mutations in SDHC have been shown to be associated on

rare occasions with PPGL (Mannelli et al. 2007), these are

much less frequent than SDHB and SDHD mutations.

Genetic heterogeneity of PPGLs is further highlighted

by identification of germline mutations in the VHL,

RET, NF1, TMEM127, and MAX genes (Dahia 2014).

Here we review our current knowledge of SDHB- and

SDHD-related disorders.
Germline SDHB and SDHD mutations

Mutation spectrum

A comprehensive database of germline SDHB and SDHD

mutations is maintained at http://chromium.liacs.nl/

LOVD2/SDH/home.php (Bayley et al. 2005). A wide variety

of intragenic mutations have been described and, more

recently, single or multiple exon deletions (and, occasion-

ally, intragenic duplications; McWhinney et al. 2004,

Cascon et al. 2008, Neumann et al. 2009). A number of

frequent SDHB and SDHD mutations were observed and

these may result from a high mutation rate or to founder

effects. Thus the relative frequency of some mutations can

vary with geographical location. In the Netherlands, two

major SDHD founder mutations have been identified

(c.274GOT (p.Asp92Tyr) and c.416TOC (p.Leu139Pro)),

and these account for O90% of SDHD mutation carriers
Published by Bioscientifica Ltd.
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(van Hulsteijn et al. 2012). A SDHD c.33C/A (p.Cys11X)

founder mutation has been reported in central Europe

(Poland; Peczkowska et al. 2008). The common SDHD

c.242COT (p.Pro81Leu) mutation has been reported as

both a recurrent and a founder mutation (Baysal et al.

2002). In the Dutch population, SDHB founder mutations

are less common. The most frequent (a splice site

mutation c.423C1G) intragenic mutation was about 15

times less common than the SDHD c.274GOT

(p.Asp92Tyr) founder mutation, and a founder SDHB

exon 3 deletion has also been reported (Bayley et al.

2009a,b, Hensen et al. 2012). In Spain, SDHB founder

mutations (exon 1 deletion and SDHB c.166_170delCCT-

CA) have also been reported (Cascon et al. 2008, 2009).
Penetrance and genotype–phenotype correlations

A major difference between the clinical presentation of

germline SDHB and SDHD mutations is the parent-of-origin

effect with the latter. Apart from a few exceptional cases

in which clinical disease has developed after maternal

transmission of a SDHD mutation (Yeap et al. 2011), the risk

of clinical disease after a maternal transmission appears

to be extremely remote. Notably, the paraganglioma

phenotype in such cases appears mild or atypical (e.g. no

multi-focal tumors) indicating functional inequality of

the two parental alleles in tumor pathogenesis (reviewed

in Baysal (2013)). Though to date unequivocal evidence of

genomic imprinting at the SDHD locus has not been found,

paraganglia-specific partial (quantitative) imprinting of

SDHD cannot be excluded. Differential methylation of a

minor CpG island upstream of a long non-coding RNA

located at the telomeric boundary of gene-rich SDHD

domain was proposed to regulate long-range enhancer-

promoter interactions (Baysal et al. 2011).

Homozygous SDHD mutations have been associated

with recessively inherited encephalomyopathy and mito-

chondrial complex II deficiency (Jackson et al. 2014).

Tumorigenesis in SDH-mutated neoplasia appears to follow

a ‘two hit’ (retinoblastoma-like) model and it has been

proposed that the parent-of-origin effects may reflect the

tendency for the ‘second hit’ causing inactivation of the WT

allele in SDHD-related tumorigenesis to be loss of the whole

chromosome 11. The imprinted gene cluster at 11p15.5

contains the maternally expressed growth suppressor

CDKN2B and the paternally expressed IGF2 growth factor

(Lim & Maher 2010). In cases of a paternally inherited

germline SDHD mutation, loss of the maternally-derived

chromosome 11 would, in a single event, result in biallelic

SDHD inactivation and loss of CDKN1C expression but
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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preservation of IGF2 expression from the paternal allele

(Hensen et al. 2004, Margetts et al. 2005). In contrast, it can

be hypothesized that, in individuals harboring a maternally

inherited SDHD mutation, loss of the paternally-derived

chromosome 11 would, whilst biallelically inactivating

SDHD, result in loss of IGF2 expression and retention of

CDKN1C expression. Such a combination is not usually

sufficient to drive tumorigenesis. In support of this

hypothesis is the observation that in one case of para-

gangliomaafter maternal transmission ofa SDHD mutation,

there was loss of the paternal SDHD allele and loss of the

maternal 11p15.5 imprinted region (Yeap et al. 2011).

An alternative model to explain the parent-of-origin

effects in transmission of SDHD-related paragangliomas

suggests regulation of SDHD gene expression by a long-

range epigenetic mechanism (Baysal et al. 2011). This

model proposes that an imprinted small CpG island

associated with a long intergenic non-coding RNA at the

boundary of gene-rich SDHD domain regulates availability

of a hypothetical distal enhancer to the SDHD promoter.

Particularly for germline SDHB mutations, the

increased use of presymptomatic genetic testing in

extended families has resulted in recognition that the

penetrance of SDHB mutations is lower than initially

thought. Thus initial estimates of the penetrance of

germline SDHB mutations were in excess of 70% but

have progressively fallen to 25–40% (Benn et al. 2006, Solis

et al. 2009, Hes et al. 2010, Ricketts et al. 2010, Schiavi et al.

2010). The relatively low penetrance of SDHB mutations is

consistent with the observation of a low de novo mutation

rate, frequent founder mutations and the relatively high

number of mutations detected in apparently isolated cases

(Baysal et al. 2002, Neumann et al. 2002, Cascon et al.

2009, Jafri et al. 2013). However, the low penetrance can

make the interpretation of likely pathogenicity for a novel

sequence variant detected in individuals with a potentially

SDH-related neoplasm complex and also raises, as yet

unresolved questions, as to the type and intensity of

tumor surveillance in asymptomatic gene carriers.

Though SDHB and SDHD encode components of the

same protein complex, there are some differences in the

relative propensities for developing different tumor types.

Thus SDHD mutations are generally associated with a

higher risk of HNPGL than non-HNPGL. For SDHB

mutations, extra-adrenal and non-HNPGL is more often

the presenting feature than HNPGL or pheochromocy-

toma, and there is a significantly higher risk of malignant

paraganglioma and poor prognosis (w25% lifetime risk;

Gimenez-Roqueplo et al. 2003, Amar et al. 2007, Ricketts

et al. 2010). Despite the heterogeneity of SDHB mutations,
Published by Bioscientifica Ltd.
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there are no clear genotype–phenotype correlations but

for SDHD, though it has been suggested that the common

p.Pro81Leu mutation is associated with a very low risk of

PPGL (in contrast to truncating SDHD mutations for

which the risk is closer to that seen with germline SDHB

mutations; Ricketts et al. 2010).

A small number of additional tumor types have been

reported in individuals with germline SDHB and SDHD

mutations. Gastrointestinal tumors (GIST) are the best

defined association. Carney–Stratakis syndrome is charac-

terized by the association of GIST with paraganglioma and, in

most cases is caused by mutations in SDHX genes

(McWhinney et al. 2007, Janeway et al. 2011). Germline

SDHXmutationmayalsobedetected inpatientswith familial

or sporadic nonsyndromic WT GIST (Janeway et al. 2011).

Renal tumors have been reported, predominantly

with SDHB mutations, but also with SDHD/SDHC

mutations and may be the presenting feature in patients

without a personal or family history of HNPGL/PPGL

(Vanharanta et al. 2004, Ricketts et al. 2008, 2010). A

variety of histopathologies may occur (e.g. conventional

(clear cell), papillary and oncocytoma) and the lifetime

risk of renal tumors in SDHB mutation carriers has been

estimated to be up to 15% (Ricketts et al. 2010).

Recently, a clinical association between pituitary

adenoma and PPGL has been recognized. Molecular

genetic studies have shown that this association may be

caused by a variety of germline mutations in known PPGL

predisposition genes (e.g. SDHB, SDHD, SDHC, VHL, and

MEN1), or may be sporadic, but the most frequently

implicated genes are SDH-subunit genes (Xekouki et al.

2011, Papathomas et al. 2013, Dénes et al. 2015).
Application of SDHB and SDHD mutation testing in

clinical practice

The recognition that a substantial proportion (approxi-

mately one-quarter of apparently sporadic cases

(Neumann et al. 2002)) might harbor a germline mutation

in SDHB, SDHD, VHL, or RET led to suggestions that all

PPGL patients might be offered genetic testing. However,

such an approach, particularly prior to the application of

next generation sequencing techniques, was expensive

and did not take into account the how clinical indicators

can be used. In particular, family history of HNPGL/PPGL,

multiple tumors, extra-adrenal location, or early age at

diagnosis (mean age at diagnosis in SDHB/SDHD-related

tumors is w10 years earlier than in sporadic cases) can be

used to stratify the likelihood of a germline mutation

being detected and so increase cost-effectiveness by
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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targeting higher risk subgroups (Erlic et al. 2009). The

application of such testing protocols was assessed in an

audit of a referral-based testing series of SDHB, SDHD, and

VHL (Jafri et al. 2013), and it was demonstrated that

though widening the testing criteria for testing sporadic

pheochromocytoma cases (e.g. from only those aged !45

years at diagnosis to those aged !60 years) increased the

numbers of mutation carriers tested but the cost of

detecting each mutation carrier increased. A comp-

lementary approach is to undertake immunohistochem-

ical analysis for SDHB protein expression in the tumors of

patients who fall outside the selection criteria. Though

loss of SDHB expression is a sensitive and specific indicator

of germline SDHX mutations (van Nederveen et al. 2009),

tumor material may not always be available to evaluate

protein loss. However, as additional inherited HNPGL/

PPGL genes have been identified, there has been increas-

ing interest in the application of next generation

sequencing strategies to allow comprehensive and less

expensive genetic analysis. Thus specific targeted rese-

quencing panels and exome analysis strategies have been

described (Rattenberry et al. 2013, McInerney-Leo et al.

2014). As the cost of genetic analysis falls, it seems likely

that there will be a move towards more extensive analysis.
Pathogenesis of SDH-mutated PPGLs

Pathogenesis of PPGLs caused by SDH mutations remains

poorly understood. SDH catalyzes the oxidation of

succinate to fumarate in the Krebs cycle and functions as

mitochondrial complex II by transferring the extracted

electrons to ubiquinone in the electron transport chain.

Loss of SDH activity leads to increased succinate and

reactive oxygen species (ROS). Thus, succinate and ROS are

considered as the signaling molecules that ultimately

trigger tumor formation upon SDH mutations. Since

discovery of the first mutations in familial PPGLs in

2000–2001 (Baysal et al. 2000, Niemann & Muller 2000,

Astuti et al. 2001b), alternative models for tumor

development have been advanced using different obser-

vations and experimental models that studied the

consequences of SDH genetic loss. These models can be

broadly classified as constitutive hypoxic drive, inhibition

of developmental neuronal culling and histone/genome

hypermethylation (Fig. 3).
Constitutive hypoxic drive

The most common phenotypic manifestation of germline

SDH mutations is the development of PPGL tumors
Published by Bioscientifica Ltd.
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Figure 3

Overview of the proposed mechanisms of SDH-mutated paragangliomas.

Mutations in SDH subunits (mainly in SDHB and SDHD) result in loss of

complex II activity and drives paraganglioma formation through accumu-

lation of ROS or succinate. Evidence favors constitutive hypoxia signaling as

the initiating mechanism of paraganglioma formation. Role of HIF1a/HIF2a

in mediating this hypoxic signaling remains to be confirmed in relevant cell

culture and animal models. Succinate may separately stimulate certain

biological pathways regulated by succinate receptors (e.g. SCNR1).

Alternatively, succinate-mediated inhibition of certain a-KG-dependent

enzymes such as PhD3, histone methyl transferases (HMTs), or TETs may lead

to inhibition of neural apoptosis, histone, and DNA hypermethylation.
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(Neumann et al. 2004, Dahia 2014). Gastrointestinal

stromal tumors (Janeway et al. 2011, Pantaleo et al. 2011)

and renal carcinoma (Neumann et al. 2004, Ricketts et al.

2008) also develop in a small minority of subjects who

carry germ line SDH mutations. HNPGL, especially the

carotid body (CB) paraganglioma, are characteristically

associated with germ line mutations in structural subunit

genes SDHD, SDHC, SDHB, and in regulatory subunit

genes SDHAF2 (Boedeker et al. 2014). The CB is an acute

oxygen-sensing organ that responds to hypoxia by

increasing heart and ventilation rate (Lopez-Barneo et al.

2008). It has been recognized that the incidence of CB

paragangliomas increase among high altitude dwellers

(Saldana et al. 1973) and those with chronic cyanotic heart

diseases (Lack 1978, Opotowsky et al. 2015). These

observations suggested early on that the SDH mutations

disrupt oxygen sensing of the CB by causing an inability to

register presence of normal oxygen levels (Baysal et al.

2000). The paraganglioma tumor formation may thus

follow chronic hypoxic stimulation of the CB oxygen-

sensing (chief) cells, either by environmental hypoxia or

by SDH mutations that inhibit oxygen sensing. The

hypothesis that chronic (pseudo)hypoxic stimulation

may lead to hereditary paragangliomas is also supported

by evidence that links increased altitudes to increased

severity of SDH-mutated paraganglioma tumors (Astrom

et al. 2003, Cerecer-Gil et al. 2010).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Gene expression profiles of SDH-mutated PPGLs

Recent genome-wide expression profiling studies show

strong induction of hypoxia and angiogenesis pathways

in SDH- and VHL-related PPGL (Dahia et al. 2005,

Lopez-Jimenez et al. 2010, Shankavaram et al. 2013).

SDH and VHL mutations induce both protein encoding

mRNAs and miRNAs (miR-210; Tsang et al. 2014) that are

implicated in cellular adaptation to hypoxia. Although

certain differences in the induced genes were observed, the

broad overlap amongst the hypoxia induced genes

between SDH- and VHL-related paragangliomas strongly

suggest that pathogenesis of SDH tumors involves

constitutive hypoxic stimulation.

The VHL gene product (pVHL) is a component of the

protein complex that possesses ubiquitin ligase activity

which mediates the proteosomal degradation of

hypoxia-inducible factors (HIFs) under normoxia (Gos-

sage et al. 2015). HIFs (HIF1, HIF2, and HIF3) are

transcription factors that mediate cellular adaptation to

hypoxia (Semenza 2012). HIFa subunits are hydroxylated

by prolyl or asparaginyl hydroxylase enzymes (PhD1,

PhD2, PhD3, and FIH) in normoxia and subsequently

degraded by ubiquitination (Kaelin & Ratcliffe 2008).

Hypoxia inhibits the hydroxylase enzymes and leads to

stabilization of HIFas. It is thought that mutations in

VHL lead to tumor formation through constitutive

stabilization of HIFs.
Published by Bioscientifica Ltd.
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Role of HIFs in SDH-mutated PPGLs

Broad transcriptional overlap between SDH and VHL-

related PPGL, and constitutive activation of the HIFs in

VHL suggested that HIFs may also mediate tumor

formation in SDH-mutated paragangliomas. HIF1a

and/or HIF2a were detected by immunohistochemistry

in both SDH-mutated and sporadic HNPGL (Pollard et al.

2006, Favier et al. 2009, Merlo et al. 2012). In vitro studies

using cell lines showed that siRNA-mediated knockdown

of SDH subunits led to stabilization of HIF1a (Selak et al.

2005, Cervera et al. 2008, Guzy et al. 2008). These studies

linked increased succinate or ROS levels to the stabil-

ization of HIFas. Despite these in vitro studies, discordant

results are obtained from gene expression analyses on the

role of HIFs in SDH-mutated PGL tumors. Although

significant overlap in gene expression patterns of SDH-

and VHL-related PGL tumors was observed including

increased HIF2a, VEGF and reduced electron transport

chain genes by transcriptome-wide studies, HIF target-

gene overexpression and increased glycolysis, as assessed

by such genes as hexokinase II (HK2), lactate dehydro-

genase, MIR210, PHD3 (EGLN3), ENO1, and SLC2A1 were

primarily observed in VHL-mutated paragangliomas

(Favier et al. 2009, Lopez-Jimenez et al. 2010). In fact,

overexpression of 67 HIF target genes was sufficient to

distinguish VHL- from SDHB-mutated pheochromocyto-

mas (Lopez-Jimenez et al. 2010). Conversely, HNPGLs that

overexpress HIF1a and its target genes were found to have

WT SDH sequences and a subset of them was indeed found

to carry somatic VHL mutations (Merlo et al. 2012, 2013).

In addition, recent sequence and functional studies

identified somatic mutations in EPAS1 which encodes the

HIF2a subunit in sporadic (mostly non-head and neck)

paragangliomas, a subset of which was accompanied by

polycythemia (Zhuang et al. 2012, Comino-Mendez et al.

2013, Toledo et al. 2013). Missense mutations in VHL,

EPAS1 (HIF2A), and PHD2 are associated with erythrocy-

tosis. For example, endemic Chuvash polycythemia is

caused by certain VHL missense germ line mutations (Lee

& Percy 2011). In contrast, SDHX mutations have yet to be

associated with erythrocytosis. Gene expression profiling

shows that EPAS1-mutated paragangliomas cluster with

SDH and VHL-related paragangliomas, and strengthens

the role of constitutive hypoxic signaling in pathogenesis

of SDH-mutated paragangliomas (Comino-Mendez et al.

2013). However, the association with erythrocytosis

suggests that pathogenesis of EPAS1-mutated paraganglio-

mas is more closely associated with the VHL-mutated

paragangliomas rather than with the SDH-mutated ones.
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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It thus appears that gene expression studies do not

provide an unequivocal evidence for involvement of HIFs

in pathogenesis of SDH-mutated paragangliomas. Whether

HIFs play a role in SDH–paraganglioma formation, however,

remains an important question which may not be con-

clusively answered by gene/protein expression studies alone.

It is important to note that hereditary renal tumors that

result from fumarate hydratase (FH) germline mutations

were initially shown to stabilize HIF1a (Pollard et al. 2005).

Accordingly, the knockdown of FH in cell lines led to robust

stabilizationofHIF1a through fumarate mediated inhibition

of the PhD enzymes (Isaacs et al. 2005). These findings are

similar to the observations previously described for

SDH-mutated pathology: i) HIFas are variably detected in

SDH-mutated paragangliomas by gene expression and

immunohistochemical studies and ii) succinate inhibition

of PhD enzymes stabilizes HIF1a upon SDH knockdown in

certain cell lines. Although such observations initially

suggested a role for HIF1 in tumor predisposition caused by

FH mutations, deletion of the Hif1a gene in the Fh1-deficient

mice, which develops renal cysts, worsened the cystic

phenotype (Adam et al. 2011). Thus, Hif1 may not mediate

the cystic renal pathology in the Fh1-mice. These results

imply that HIF stabilization observed in SDH-mutated

tumors may not necessarily indicate its causative role in

tumor pathogenesis. Ultimately, animal or cell culture

models that link inactivation of SDH to PPGL development

or to a hypoxia-related physiological response will be

required to evaluate the role of HIFs in SDH-mutated tumor

pathogenesis or SDH-regulated hypoxia response.

Heterozygous inactivation of Sdhbor Sdhdgenes inmice

does not lead to tumor development, in particular while

homozygous inactivation is embryonic lethal (Bayley et al.

2009a,b, Piruat & Millán-Uclés 2014). Sdhd conditional

constitutional or paraganglia-confined homozygous

deletions also show no evidence of tumor development

(Diaz-Castro et al. 2012). These findings highlight species-

specific differences in tumor susceptibility between human

and mouse that follows the inactivation of mitochondrial

complex II subunits. While gene knockout studies in mice

did not recapitulate the paraganglioma tumor phenotype,

they provide some information on activation of hypoxia-

related pathways. Heterozygous Sdhd deletion increases

sensitivity of the CB chief cells to hypoxia (Piruat et al.

2004), which is consistent with the hypothesis that

inactivation of Sdh hampers the ability of CB chief cells to

register normal oxygen levels and triggers normoxic

activation of hypoxia sensing pathways. Gene expression

analyses of SdhdK/K tissues show mixed evidence of

Hif activation. While SdhdK/K MEFs showed Hif1a
Published by Bioscientifica Ltd.
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stabilization, two other tissues did not show any evidence

of hypoxic pathway activation (Millán-Uclés et al. 2014).

In summary, mimicry of the hypoxia-associated CB

paragangliomas and gene expression profiling studies

provide strong evidence of constitutive hypoxic pathway

activation in pathogenesis SDH-mutated paraganglioma

tumors. However, determining the role ofHIFs inmediating

this hypoxia-driven pathogenesis requires further studies.
Inhibition of a-ketoglutarate dependent dioxygenases

The PhD enzymes are members of a large family of Fe(II)/

a-ketoglutarate (KG)-dependent dioxygenases (Hausinger

2004). Inhibition of PhDs by succinate on genetic and

pharmacologic inhibition of SDH raised the possibility that

other dioxygenases may also contribute to paraganglioma

development. Succinate accumulation by SDH inhibition

has been shown to inhibit jumonji-domain histone

demethylases (JmjC), leading to histone H3 hypermethy-

lation (Smith et al. 2007). Succinate is also shown to inhibit

other a-KG-dependent dioxygenases, including collagen

prolyl-4-hydroxylases and the ten-eleven translocation

(TET) family of 5-methlycytosine (5mC) hydroxylases,

which leads to hypermethylation of CpG islands (Xiao

et al. 2012). Both histone and DNA hypermethylation have

the potential to alter gene expression levels. Examination of

SDH-mutated paragangliomas showed downregulation of

gene expression for 191 genes that acquired promoter

methylation as a result of inhibition of the TET family of

5mC hydroxylases (Letouzé et al. 2013). Certain methylated

genes including PNMT and KRT19 were linked to neuro-

endocrine differentiation and epithelial-to-mesenchymal

differentiation, respectively, raising the possibility that

succinate-mediated inhibition of TET family 5mC hydro-

xylases may play a role in SDH-mutated paraganglioma

development. Whether suppression of PNMT, KRT19, or

other genes by CpG island or histone methylation

provides an advantage in SDH-mutated tumor progression,

however, remains to be directly demonstrated. As

previously discussed, broad overlap in hypoxia-related

gene expression patterns between SDH and VHL para-

gangliomas and between genetic and sporadic HNPGL

suggests that the role of histone and DNA methylation in

influencing global gene expression profiles may be limited.

It is conceivable that whereas initiation of SDH-mutated

paragangliomas may involve constitutive hypoxia-

signaling, succinate-inhibition of a-KG-dependent dioxy-

genases may contribute to tumor progression.

Germ line mutations in FH in hereditary leiomyoma-

tosis and renal cell cancer, somatic gain-of-function point
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2

in low-grade gliomas, secondary glioblastomas, various

sarcomas, and acute myeloid leukemia cause increased

fumarate and D-2-hydroxyglutarate, respectively, and lead

to DNA and histone methylation by inhibiting

a-KG-dependent dioxygenases (Morin et al. 2014).

a-KG-dependent dioxygenases comprise a large family of

enzymes that perform diverse and important biological

functions including protein modification, repair of alky-

lated DNA/RNA, and lipid metabolism. It is notable that

there is no major overlap amongst the tumor spectra

associated with SDH, FH, and IDH1/2 mutations, although

rare familial paraganglioma cases carrying FH germ line

mutations have been recently described (Letouzé et al.

2013, Clark et al. 2014). Thus, succinate, fumarate, and

D-2-hydroxyglutare, the oncometabolites generated by

SDH, FH, and IDH1/2 mutations, respectively, may inhibit

not only PHD, TET, and histone demethylating enzymes

but also other a-KG-dependent dioxygenases that provide

an advantage for cancer cell survival.

Whether succinate receptors (SUCNR) mediate signal-

ing in pathogenesis of SDH-mutated paragangliomas

remains an underexplored area. Succinate is a ligand for

GPR91 (also known as SUCNR1), a G-protein coupled

receptor (He et al. 2004). SUCNR1 is expressed in kidney,

liver, spleen and white adipose tissue (Ariza et al. 2012).

SUCNR1 stimulates angiogenesis in retina. Extracellular

succinate activates the SUCNR and may increase the VEGF

levels through HIF1a-independent mechanisms (Sapieha

et al. 2008). SUCNR1 may mediate certain effects of hypoxia

which increases the succinate levels. These results suggest

that succinate can act as a physiological signaling molecule

and raise the possibility that some aspects of paraganglio-

mas, such as increased vascularity may be mediated by

increased succinate signaling through SUCNR1.
Inhibition of neuronal apoptosis linked to PhD3

It has been suggested that succinate accumulation

following SDH inactivation inhibits PHD3 activity,

which is required for neuronal apoptosis after NGF

withdrawal (Lee et al. 2005). According to this model,

abnormal NGF signaling leading to reduced apoptosis and

enhanced survival of sympathetic neurons provides a

unifying model for the mechanism of pheochromocytoma

formation following mutations in NF1, RET, SDH, and

VHL. Notably, Lee et al. (2005) did not observe HIF

stabilization in PC12 pheochromocytoma cell lines after

SDH knockdown and suggested that succinate inhibition

of PhD3, rather PhD1 which controls HIF stability,
Published by Bioscientifica Ltd.
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provides a mechanistic link between SDH inactivation and

pheochromocytoma susceptibility (Lee et al. 2005). It is

conceivable that inhibition of neuronal apoptosis and

epigenetic inactivation of genes important for neuronal

differentiation by TET inactivation may collaborate to

promote development of paraganglioma tumors.

However, it is unclear whether this common model

based on inhibition of apoptosis can explain the

distinct expression profiles conferred by mutations in

VHL/SDHX vs RET/NF1 in PPGLs and the activation of

hypoxia-related pathways specifically in the SDH-mutated

paragangliomas.
Other aspects of pathogenesis in
SDH-mutated paragangliomas

Role of ROS in SDH-mutated pathogenesis

Mitochondrial complex II generates significant quantities

of ROS (Quinlan et al. 2012), which is further enhanced

by certain mutations (Ishii et al. 2005). Whether ROS

contributes to pathogenesis of SDH-mutated paraganglio-

mas is the subject of ongoing investigations. In addition to

stabilizing HIF1a (Guzy et al. 2008), ROS generated by

SDHC mutations has also been implicated in mutating

nuclear DNA and therefore contributing to tumorigenesis

(Ishii et al. 2005). Role of somatic mutations in SDH-

mutated paragangliomas, however, remains unconfirmed.

SDH-mutated paragangliomas does not frequently acquire

point mutations in the non-mutated allele, which is often

lost by large deletions (Dahia 2014). Recent tumor

sequencing studies also show very low levels of overall

mutations in SDH-mutated paragangliomas (Castro-Vega

et al. 2015).
Malignancy among SDHB mutation carriers

Prevalence of malignant paragangliomas as defined by

metastasis among SDHB mutation carriers is substantially

higher than among SDHD carriers (13% vs 4%; van

Hulsteijn et al. 2012). The association of SDHB mutations

with malignancy appears to hold both for HNPGL and

non-HNPGL (Boedeker et al. 2007). Metastasis is thought

to occur through a process called epithelial–mesenchymal

transition (EMT; Scheel & Weinberg 2012). EMT confers

cancer cells with stem-cell like properties including the

ability to migrate and grow in distant anatomic sites. Gene

expression analyses of SDHB-related metastatic paragan-

gliomas show differential alterations in genes implicated

in EMT, such as those encoding metalloproteinases and
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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cellular junction proteins (Loriot et al. 2012). Whole

exome-sequencing identified ATRX2 mutations in subset

of clinically aggressive paragangliomas, including in two

SDHB-mutated tumors (Fishbein et al. 2015). While such

findings may help to explain the mechanism by which the

metastatic behavior is acquired in SDHB–paragangliomas,

the question remains as to why the loss of SDH through

different subunit gene mutations have such distinct

consequences on the metastatic potential.

Because heterozygous SDH mutations predispose to

tumor formation, haploinsufficiency of an SDH subunit

initiates the tumorigenic process. Hereditary paragan-

glioma formation usually follows loss of the unmutated

SDHB or SDHD allele, which abolishes the whole mito-

chondrial complex II activity. It is conceivable that SDHB

haploinsufficiency occurs in developmentally more imma-

ture paraganglionic cells that are prone to develop stem-

cell like properties during tumorigenesis enabling them to

migrate and proliferate in distant sites. However, SDHD

or SDHC haploinsufficiency may occur in more mature

paraganglionic cells that are less likely to dedifferentiate

and metastasize.
Conclusion

Mutations in SDH subunits account for most familial and

sporadic HNPGLs and PPGLs, and have also been linked

to other neoplasms including GISTs, renal cancer, and

pituitary adenomas. Abundant evidence suggests that

constitutive hypoxic stimulation plays an important role

in development of SDH-mutated paraganglioma tumors.

However, mechanisms by which SDH regulates oxygen

sensing and signaling are poorly understood. Progress

would be facilitated by development of relevant animal or

cell culture models that link SDH dysfunction to tumor

formation and/or to altered physiological responses to

hypoxia. Whether HIF1a/HIF2a is involved in the hypoxic

signaling pathway suspected to drive SDH-mutated

paragangliomas can be rigorously addressed only through

such models. Recent studies on Fh1 mouse model suggest

that the stabilization of HIFa in tumor samples does not

necessarily indicate its involvement in tumor patho-

genesis. Although the association of activating EPA-

S1/HIF2A mutations with PPGL would support a role for

HIFs, the co-occurrence of erythrocytosis in certain

carriers suggests that pathogenesis of PPGL tumors with

EPAS1/HIF2A mutations may be more closely associated

with VHL-mutated than SDHX-mutated tumors. Succinate

accumulation in SDH-mutated paragangliomas inhibits

certain a-KG-dependent dioxygenases and leads to histone
Published by Bioscientifica Ltd.
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and DNA hypermethylation. Significance of these hyper-

methylation events in driving PPGL tumor formation and

whether they influence hypoxic pathway activation

requires further studies. The discovery of SDH mutations

in PPGLs in early the 2000s confirmed Warburg’s

suspicion that defective mitochondria is the root cause

of the neoplastic process (Warburg 1956) at least in certain

tumor types, and heralded an era of metabolic studies that

aim to understand the role of mitochondria in cancer

(Wallace 2012).
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Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C,

Janin M, Menara M, Nguyen AT, Benit P et al. 2013 SDH mutations

establish a hypermethylator phenotype in paraganglioma. Cancer Cell

23 739–752. (doi:10.1016/j.ccr.2013.04.018)

Lim D & Maher ER 2010 Genomic imprinting syndromes and cancer.

Advances in Genetics 70 145–175. (doi:10.1016/B978-0-12-380866-0.

60006-X)

Lopez-Barneo J, Ortega-Saenz P, Pardal R, Pascual A & Piruat JI 2008 Carotid

body oxygen sensing. European Respiratory Journal 32 1386–1398.

(doi:10.1183/09031936.00056408)

Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ, Munoz I, Schiavi F,

Montero-Conde C, de Cubas AA, Ramires R, Landa I, Leskela S et al. 2010

Research resource: Transcriptional profiling reveals different pseudohy-

poxic signatures in SDHB and VHL-related pheochromocytomas.

Molecular Endocrinology 24 2382–2391. (doi:10.1210/me.2010-0256)

Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libé R, Bertherat J,
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