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Abstract
Prostate cancer (PCa) has become the most common form of cancer in men in the developed

world, and it ranks second in cancer-related deaths. Men that succumb to PCa have a disease

that is resistant to hormonal therapies that suppress androgen receptor (AR) signaling,

which plays a central role in tumor development and progression. Although AR continues to

be a clinically relevant therapeutic target in PCa, selection pressures imposed by androgen-

deprivation therapies promote the emergence of heterogeneous cell populations within

tumors that dictate the severity of disease. This cellular plasticity, which is induced by

androgen deprivation, is the focus of this review. More specifically, we address the

emergence of cancer stem-like cells, epithelial–mesenchymal or myeloid plasticity, and

neuroendocrine transdifferentiation as well as evidence that demonstrates how each is

regulated by the AR. Importantly, because all of these cell phenotypes are associated with

aggressive PCa, we examine novel therapeutic approaches for targeting therapy-induced

cellular plasticity as a way of preventing PCa progression.
Key Words

" prostate

" androgen receptor

" endocrine therapy resistance
Endocrine-Related Cancer

(2015) 22, R165–R182
Introduction
Prostate cancer (PCa) has become the most common

form of cancer in men in the developed world, and

it ranks second in cancer-related deaths, with the vast

majority of these fatalities resulting from metastatic

disease (Siegel et al. 2014). Advanced PCa is initially

treated with androgen deprivation therapy (ADT), a key

therapeutic approach that is based on the central role

that androgens play in tumor development and growth

(Heidenreich et al. 2014). Although it is widely used and

was initially highly effective, ADT uniformly leads to the

development of castration-resistant PCa (CRPC), an

aggressive and usually fatal cancer state that continues

to progress despite treatment. The recent development of

therapeutics that block androgen receptor (AR) activity,
such as abiraterone and enzalutamide, has greatly

enhanced clinical management and extended the survi-

val of CRPC patients in both the pre- and the post-

chemotherapy setting (de Bono et al. 2011, Ryan et al.

2013, Beer & Tombal 2014). Nonetheless, advanced PCa

remains incurable because resistance rapidly emerges via

the reactivation of the AR and/or alternative adaptive

mechanisms (Joseph et al. 2013). Tumor cell plasticity

induced by androgen deprivation may play a principal

role in treatment resistance and disease progression, and

it potentially provides a new opportunity for therapeutic

intervention.

Although the precise mechanism that governs the

development of CRPC has yet to be fully realized, CRPC
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arises when cancer cells maintain AR signaling in the

absence of normal levels of ligand or when they shed their

dependence on the AR entirely by hijacking alternative

growth and survival pathways. Several mechanisms

for explaining CRPC progression have been proposed,

including: altered functionality of the AR because of

genetic alteration, which results in either hypersensitive

(Visakorpi et al. 1995, Waltering et al. 2009), promiscuous

(Fujimoto et al. 2007), or constitutively activated (Dehm

et al. 2008) states; the intratumoral synthesis of androgens

(Locke et al. 2008); and altered growth factor and/or

microenvironment signaling (Lai et al. 2009, Sun et al.

2012, Lubik et al. 2013, Yang et al. 2014). Despite

concerted efforts to develop pharmacological agents that

are capable of suppressing AR signaling, progression is

inevitable. Selection pressures imposed by therapy pro-

mote genomic rearrangements, alter inflammatory and

immune responses, and change the structure of chroma-

tin, and they thereby allow PCa cells to adapt to a plastic

phenotype/genotype (Yu et al. 2010, Urbanucci et al. 2012,

Sharma et al. 2013). In this review, we focus on therapy-

induced cellular plasticity, specifically the emergence of

cancer stem-like cells (CSCs), epithelial–mesenchymal or

myeloid plasticity, and neuroendocrine transdifferentia-

tion, which may contribute to disease progression. A clear

understanding of these processes will help guide novel

therapeutic strategies that could enhance the efficacy of

clinically utilized anti-androgen therapy to cure, or at least

delay, PCa.
Prostate tumor plasticity: CSCs

Cancer stem cell theory proposes that cancer cell

populations have a hierarchical developmental structure,

and only a fraction of tumor cells – the CSCs – can drive

tumor growth and disease progression, perhaps through

therapy resistance and metastasis. This framework has

been based on genetic tracing studies that showed that

cancers are composed of a heterogeneous population of

cells that not only possess the capacity for self-renewal

but also have extremely aggressive metastatic ability and

heightened resistance to conventional radio- and chemo-

therapies (Chen et al. 2012, Driessens et al. 2012,

Schepers et al. 2012). Accumulating evidence suggests

that PCa contains a rare and distinct population of CSCs

that are responsible for tumor formation and are similar

to those CSCs found in other cancers (Bonnet & Dick

1997, Al-Hajj et al. 2003, Collins et al. 2005, Visvader &

Lindeman 2008). To illustrate this point, PCa patients

who harbor an embryonic stem cell (ESC) gene
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0137 Printed in Great Britain
expression signature have poor survival outcomes and

highly metastatic tumors (Markert et al. 2011). Prospec-

tive prostate CSCs have been isolated from cell lines and

dissociated primary tumors based on the expression of

cell surface markers, which usually include CD44 in

combination with a variety of other markers, such as

SCA1, CD133, ALDH, and/or a2b1 integrin. For example,

CD44C cells fractionated from PCa cell lines and patient-

derived xenografts have been shown to be enriched in

tumorigenic and metastatic progenitor cells as compared

to isogenic CD44K cells (Patrawala et al. 2006). More-

over, as few as 100 CD44C/CD24K cells derived from the

LNCaP cell line demonstrated tumor-forming abilities

when they were transplanted into NOD/SCID mice

(Hurt et al. 2008). Finally, prospective CSCs have been

isolated from primary human PCa cell lines based on

the expression of CD44C/CD133C/a2b1hi, and these

cells were able to self-renew and regenerate phenotypi-

cally mixed populations in vitro (Collins et al. 2005, Wei

et al. 2007).

As is evident from these previous studies, a lack of

consensus exists with respect to the marker expression and

phenotype of the prostate CSC subpopulation. This has

been complicated by an incomplete and contradictory

understanding of the cellular hierarchy within the normal

prostate. Studies by van Leenders et al. have begun to

dissect the different prostate cell populations based on

their unique cytokeratin expression patterns (Schalken &

van Leenders 2003). However, it remains difficult to

determine whether a cancer cell of origin is a stem cell,

a multipotent progenitor, or of a more differentiated

progeny because of the lack of in situ markers and our

inability to isolate pure cell populations. The discordance

between stem cell markers in cell lines and clinical

specimens has further hampered our ability to quantify

CSCs in human specimens (Hoogland et al. 2014). Despite

these technical challenges, there is evidence to suggest

that the expansion of intermediate epithelial stem cells

causes PCa (van Leenders et al. 2000). For example, the

activation of oncogenic signaling pathways (e.g., AKT) in

SCA1C murine stem/progenitor cells were shown to give

rise to high-grade prostatic intraepithelial neoplasia (PIN)

lesions following an 8-week incubation (Xin et al. 2005).

Early studies demonstrated that basal stem cells are

capable of tumor induction in renal grafting models

(Goldstein et al. 2010, Taylor et al. 2012). More recently,

however, elegant lineage-marking experiments in

multiple mouse models have directly implicated Nkx3.1-

expressing luminal stem cells as the favored cells of origin

(Karthaus et al. 2014, Wang et al. 2014).
Published by Bioscientifica Ltd.
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All of these studies fit the simple assumption that

normal prostate stem cells acquire genetic and/or epige-

netic alterations to transform into CSCs, which drive

tumor progression. The picture became more complicated

when the current doctrine regarding unidirectional

normal and neoplastic stem cell hierarchies was scruti-

nized. Three large independent studies revealed that

tumor cells display considerable plasticity; that is, differ-

entiated, post-mitotic cells are able to ascend the cellular

hierarchy and re-enter the CSC state. The paradigm-

shifting work of Gupta et al. demonstrated that breast

cancer cell populations can interconvert between pheno-

typic states. These initial findings indicated that CSCs can

arise de novo from non-stem-like cells and that this process

of de-differentiation can occur continually during the

development of a tumor (Gupta et al. 2011). Additional

work by the Weinberg group identified that contextual

signals from the microenvironment, specifically TGFb

coupled to the activation of ZEB1, regulate the conver-

sions from non-CSC to CSC states (Chaffer et al. 2011,

2013). Finally, a study by Flavahan et al. (2013) revealed

that glioblastoma cells can de-differentiate into CSCs

under the pressure of certain stressors, such as glucose

deprivation. A similar phenomenon has been described in

PCa, wherein cellular stress caused by anti-androgen

therapy induced LNCaP and PC3 cells to convert to

a CSC state (Tang et al. 2009). Together, these studies

represent an important landmark. It is now clear that

transformed cells retain some degree of phenotypic

plasticity, and in response to appropriate stimuli, they

can reactivate stem cell-associated self-renewal programs

to drive advanced disease.
AR as a regulator of CSCs

There is accumulating evidence that ADT yields an

expansion of CSCs, which suggests that the loss of

canonical AR activity may be a potential inducer of the

CSC state and of non-CSC-to-CSC plasticity. In both

human xenograft and transgenic TRAMP models, the

expression of stem cell markers increased dramatically

post-ADT (Tang et al. 2009, Seiler et al. 2013), whereas PCa

patients who received ADT were found to harbor an

expanded CD133C CSC population (Lee et al. 2013a).

Keeping with these findings, several recent studies found

that some prostate CSC subpopulations express low levels

of AR and are resistant to castration. Cells isolated on the

expression of CD44C/CD133C/a2b1hi were found to be

ARK (Collins et al. 2005), and CD44C/ARK cells from

patient-derived xenografts co-expressed stem-cell
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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associated genes (Gu et al. 2007). Additionally, in the

BM18 xenograft model, preexisting CSCs, which are ARlo

and co-express ALDH1A1 and/or NANOG, were selected by

castration and could reinitiate CRPC tumor growth

(Germann et al. 2012). Most notably, Qin et al. (2012)

discovered a cell population with low expression of

prostate specific antigen (PSA), a direct target gene of AR,

within high-grade prostate tumors that exhibited a

heightened self-renewal capacity. These cells also

expressed CSC-associated markers, such as CD44, integrin

a2, and ALDH1A1, exhibited high clonogenic potential,

and possessed tumor-propagating capacity. The

ALDHC/CD44C/a2b1C CSC subpopulation could be pro-

spectively purified in PSAK/lo cells, which indicates that

low AR expression and/or activity may increase the CSC

population (Qin et al. 2012).

Although these clinical data are supportive of the

implication that AR suppression is a modulator of CSC

plasticity, they are not entirely sufficient to verify this

suggestion. Fortuitously, studies of ESCs have provided

more extensive evidence for an involvement of AR in

regulating a stem-like state. It has been demonstrated that

AR signaling suppresses ESC self-renewal capacity (Chang

et al. 2006), and during ESC differentiation, AR levels

continue to increase in order to ‘tip the balance’ from self-

renewal to differentiation (Sauter et al. 2005). Similarly,

in PCa, AR-negative cell lines have an increased ability

to form non-adherent spheroids, which are a surrogate

measure of self-renewal capacity (Li et al. 2008). More

recent work using siRNA or the anti-androgen bicaluta-

mide to suppress AR in PCa cell lines has resulted in

enhanced spheroid formation (Lee et al. 2013a), which

provides further support for the suggestion that AR

inhibits self-renewal capacity. In a reciprocal set of

experiments, overexpression of AR within the CD133C

CSC population isolated from LNCaP and C4-2 cell lines

dramatically reduced spheroid formation (Lee et al.

2013a). Together, these studies establish AR as a major

regulator of the CSC phenotype in PCa.

Although we believe that a model in which aberrant

AR signaling can enhance cellular plasticity is sound,

the mechanism remains poorly understood. One possible

mechanistic explanation for the association between the

CSC phenotype and AR is its ability to directly regulate

stem cell transcription factors, including SOX2, NANOG,

and OCT4, which function in maintaining stem cell

survival, self-renewal, and pluripotency. For example,

SOX2 is transcriptionally repressed by AR, and, as

expected, treating multiple PCa cell lines with the anti-

androgen enzalutamide has been shown to increase SOX2
Published by Bioscientifica Ltd.
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expression and to lead to CRPC tumor formation (Kregel

et al. 2013). AR has also been reported to directly bind

to the NANOG promoter (Kregel et al. 2014) to impart

castration resistance in LNCaP cells driven by the

expansion of CD133C and ALDH1C CSCs (Jeter et al.

2011). Apart from direct transcriptional regulation, AR can

also indirectly modulate the Wnt (Bisson & Prowse 2009),

PI3K/AKT (Dubrovska et al. 2009), and hedgehog (Gowda

et al. 2013) signaling cascades, which play an important

role in regulating PCa CSC self-renewal. Together, these

findings beg the question of how AR is reprogrammed to

facilitate CSC plasticity and CRPC progression. A pioneer-

ing study by Xu et al. (2012) demonstrated that in CRPC,

AR is recruited to distinct genomic sites, where it executes

a distinct transcriptional program to drive tumor cell

proliferation and survival. This shift in the AR binding

landscape requires the co-factor EZH2, an epigenetic

regulator with a well-documented role in regulating

cell identity (Margueron & Reinberg 2011). Although the

resultant chromatin architectural and mechanistic

consequences are not fully understood, CSC plasticity is

probably mediated at least in part by the cooperation of AR

and EZH2.

The impressive recent crescendo of experimental

observations that implicate cytokines and growth factors

in enhancing the CSC phenotype underscore the role of

the tumor microenvironment in the phenotypic plasticity

of tumor cells and CSCs. We recently learned from a study

by Wang et al. (2013) that endothelial cells within the

prostate are increased following ADT. These cells secrete

interleukin 6 (IL6), which activates PI3K/AKT signal

transduction to suppress AR transactivation (Yang et al.

2003). Intriguingly, elevated PI3K/AKT activity coincides

with stem cell activation and maintenance (Segrelles et al.

2014), and treating mice with soluble IL6 receptor fusion

protein or silencing PI3K in tumor cells has been shown

to significantly suppress prostate tumor growth via a

reduction in the CSC population (Dubrovska et al. 2009,

Schroeder et al. 2014). IL6 has also been reported to

activate NF-kB to maintain and expand the CSC popu-

lation in breast cancer (Korkaya et al. 2012) and PCa

(Rajasekhar et al. 2011). Notably, the overexpression of NF-

kB in LNCaP cells has been shown to confer resistance to

enzalutamide (Nadiminty et al. 2013), possibly through

the expansion of the CSC population. Hence, targeting the

androgen axis modulates CSC plasticity not only through

direct transcriptional regulation, such as SOX2 and

NANOG, but also by affecting multiple cell types that

comprise the tumor microenvironment.
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Prostate tumor plasticity:
epithelial–mesenchymal transition

In addition to expanding CSCs, androgen deprivation

is also known to direct the plasticity of transformed

epithelial prostate cells toward a mesenchymal cell state,

or vice versa. Epithelial–mesenchymal transition (EMT)

is a developmental process wherein epithelial cells begin

expressing mesenchymal markers in response to tumor

microenvironmental stimuli; they also lose cell adhesions,

change shape, and become more migratory and invasive.

Ultimately, this process allows tumor cell dissemination

and the formation of distant metastases (Kalluri &

Weinberg 2009, Lim & Thiery 2012, Sun et al. 2012). In

normal development and in PCa, this transition is

controlled by the expression of the epithelial marker

E-cadherin, which when down-regulated allows factors

that drive EMT, such as ZEB1, TWIST, SLUG and SNAIL,

b-catenin, and ETS1, to drive the expression of mesench-

ymal markers, including N-cadherin, vimentin, fibronectin,

cadherin 11, collagen 1, a2(b)b3 integrin, and syndecan 1

(Anose et al. 2008, Jennbacken et al. 2010, Shiota et al.

2010, Zhu & Kyprianou 2010, Matuszak & Kyprianou

2011, Yates 2011, Clyne 2012, Wu et al. 2012). Recently,

the use of the term ‘phenotypic plasticity’ has also

included reversible mesenchymal–epithelial transition

(MET) that occurs in cancer cells when mesenchymal

cells revert to an epithelial-like phenotype once they have

established metastases in new organs (Nieto 2013). More-

over, there is close association between the CSCs and EMT

in PCa, although the relationship between these two

dynamic states is unclear. However, what is known is that

this tumor cell epithelial plasticity is implicated in PCa

metastasis and therapeutic resistance, and, like CSCs,

it is controlled by the AR.
AR as a regulator of EMT

Multiple studies have shown that mesenchymal markers,

including N-cadherin, vimentin, ZEB1, TWIST, and SNAI2,

are highly expressed in androgen-deprived patient tumors,

cell lines, and xenografts and mouse models, and a

number of AR-dependent mechanisms of EMT control

have been proposed (Liu et al. 2008, Zhu et al. 2010, Sun

et al. 2012, Izumi et al. 2013, Lin et al. 2013a,b). In patient-

derived tissue slice grafts, 6–10 weeks of flutamide or

lupron treatment was shown to induce the expression of

the mesenchymal marker vimentin and to cause the

mislocalization of E-cadherin (Zhao et al. 2013). Similarly,

androgen deprivation caused EMT, as was shown by the
Published by Bioscientifica Ltd.
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overexpression of N-cadherin, ZEB1, TWIST1, and SLUG in

normal mouse prostate tissue, in LuCaP35 xenografts, and

in PCa patients tissue xenografts as well as in LNCaP cells

cultured in charcoal-stripped serum (Sun et al. 2012). In

addition, the mesenchymal marker cadherin 11, which is

overexpressed especially in bone metastasis of PCa, is

reduced by androgens in PCa cell lines, which may be

regulated by the AR at the transcriptional level (Lee et al.

2010). Indeed, multiple studies have shown an association

between the AR and EMT transcription factors. Under ADT

conditions, EMT has been shown to be mediated via a

feedback loop of AR and the EMT transcription factor

ZEB1, as was evidenced by the mutual exclusive

expression of AR and ZEB1 in castration-sensitive

(LNCaP) and castration-resistant (CWR22Rv1, PC-3, and

DU145) PCa cell lines. This was further supported by the

up-regulation of ZEB1 in AR-silenced, TSA, and 5-Aza

treated cells and the up-regulation of AR in shZeb1 cells

treated with TSA and 5-Aza (Sun et al. 2012). ZEB2 has also

been recently identified as being overexpressed in PCa as

compared to benign prostatic hyperplasia and was

described as being AR-regulated; AR positively regulates

ZEB2 in androgen-dependent cells, but it is a negative

regulator of ZEB2 in androgen-independent PCa cells

(Jacob et al. 2014). The authors of this last study

demonstrated that ZEB2 expression is up-regulated in

response to androgen stimulation and down-regulated

after the silencing of AR in androgen-dependent LNCaP

cells. However, androgen-independent PC-3 and DU145

cells expressed higher levels of ZEB2 than LNCaP cells did,

and forced AR expression in these cells reduced ZEB2

expression, invasiveness, and migration and increased

the levels of the ZEB2 transcriptional target E-cadherin

(Jacob et al. 2014). These results support the idea

that AR-regulated EMT is a cell context-dependent

phenomenon in PCa. Importantly, however, the detailed

mechanism that describes how AR and ZEB1/2 interact

to inhibit each other has not been described.

In addition to ZEB1/2, the Snail family zinc-finger

transcription factor SLUG was recently identified as being

androgen-regulated and as being a coordinator of AR

that promotes the development of CRPC (Wu et al.

2012). Wu et al. found that the presence of constitutively

active AR induced SLUG expression. That study also

showed that SLUG formed a complex with AR and acted

as a co-activator by enhancing AR transcriptional activity

even in the absence of androgen and thus providing

a growth advantage in androgen-deprived conditions in

CRPC (Wu et al. 2012). Furthermore, the authors

indicated that PCa cells that overexpress the AR splice
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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variants ARV7, AR3, and Arv567es show induced SLUG

expression. Constitutively active AR splice variants are

important regulators of aberrant androgen signaling,

because these variants are able to maintain androgen

signaling in the absence of androgens as a result of the

lack of ligand binding domain. Thus, this study suggests

that cooperation between SLUG and AR variants

might drive an aggressive EMT phenotype in CRPC

(Wu et al. 2012).

Many other pathways that converge with the AR

regulate EMT in CRPC, including the growth factor

receptor tyrosine kinase (RTK), PTEN, notch, hedgehog,

Wnt, and TMPRSS2:ERG pathways (Leshem et al. 2011,

Kim et al. 2014) and the STAT3 pathway (Karhadkar et al.

2004, Acevedo et al. 2007, Bisson & Prowse 2009,

Mulholland et al. 2012). For example, in a study by

Izumi et al., the silencing of AR in LNCaP cells and PCa

mouse xenograft models was shown to promote cell

migration by up-regulating the CCL2-dependent STAT3

and EMT pathways. The authors suggest that co-targeting

CCL2/CCR2–STAT3 signaling may provide a novel thera-

peutic approach for targeting PCa progression and

metastasis at the castration-resistant stage (Izumi et al.

2013). In another study, ADT induced cell invasion that

was reversed by targeting pSTAT3–CCL2 signaling in PCa

cells and in mouse models (Lin et al. 2013a). In addition to

CCL2, STAT3 signaling and EMT have also been shown

to be regulated by HSP27, which is increased after ADT

in CRPC (Rocchi et al. 2005, Shiota et al. 2013, Cordonnier

et al. 2015). Silencing HSP27 reversed an EMT phenotype

by reducing STAT3 phosphorylation and subsequent

binding to the TWIST promoter and also by reducing

EGF-mediated EMT via the modulation of the

b-catenin/SLUG signaling pathway (Shiota et al. 2013,

Cordonnier et al. 2015). Because b-catenin is also

up-regulated in CPRC, co-localizes with AR in the nucleus,

and can act as an AR co-activator, targeting b-catenin–AR

interactions may represent a potential novel therapeutic

strategy for preventing transcriptional activation of AR in

CRPC and AR-dependent EMT (Robinson et al. 2008,

Schweizer et al. 2008, Wang et al. 2008). Moreover, these

results suggest that targeting HSP27 and/or STAT3 may

reverse EMT in advanced PCa. Taken together, several

EMT-associated pathways and EMT markers have been

shown to be regulated by ADT, and aberrant AR signaling

in particular has been proposed to induce EMT and to

regulate epithelial cell plasticity in CRPC. However, we

have yet to define the detailed molecular mechanisms

that underlie how AR regulates cell plasticity and to

identify potential common drivers for these phenotypes.
Published by Bioscientifica Ltd.
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Tumor cell plasticity: alternative
epithelial–myeloid transition

The many observations of the emergence of CSCs and cells

that have undergone EMT in therapy-resistant PCa high-

light the importance of AR-regulated tumor cell plasticity

as a driver of advanced disease. However, the diversity of

tumor cell types that may arise from CSCs or are included

in this ‘plasticity’ are now broader than was originally

thought. For example, an alternative epithelial–myeloid

version of EMT (EMyT) has been proposed for tumor cells.

The EMyT theory is based on the overlap in the expression

of cluster of differentiation (CD) markers, pattern recog-

nition receptors (PRRs), cytokine and growth factor

receptors, and matrix metalloproteases in cancer cells

that typically define multiple myeloid cell lineages of the

immune system (Schramm 2014). Although the thera-

peutic implications of this alternative immune EMyT for

most tumor types has yet to be established, there is

mounting evidence in PCa that certain myeloid marker

expression correlates with aggressive tumor cell behavior.

Moreover, because CSCs and EMT phenotypes are dictated

by AR activity in PCa, this myeloid plasticity may likewise

be androgen-regulated.
AR regulation of epithelial–myeloid transition

Depending on the AR expression in PCa cell lines, there is

differential expression of toll-like receptors (TLRs), which

are innate PRRs that normally function to alert immune

cells and epithelial cells to infection by bacteria, viruses, or

parasites. Although the mechanisms of immune evasion

by cancer cells that express TLRs are outside the scope of

this review, the presence of TLRs in PCa does have clinical

relevance. The increased expression of TLR3 and TLR9 in

patients with primary PCa has been shown to predict

biochemical recurrence of CRPC (Gonzalez-Reyes et al.

2011), and in African American men, polymorphisms in

TLR2 were shown to be a significant predictor of PCa risk

(Rogers et al. 2013). Interestingly, whereas androgen-

dependent LNCaP cells stimulated with the TLR3 agonist

poly:IC (double-stranded RNA) undergo apoptosis,

AR-negative PC3 cells activate an interferon response

pathway that leads to the up-regulation of inflammatory

mediators, which may promote tumor progression (Palchetti

et al. 2015). LNCaP cells and PC3 cells also respond

differently to stimulation with the TLR2 agonist lipotei-

choic acid (LTA), which increases the invasiveness of

LNCaP cells but decreases that of PC3 cells (Rezania et al.

2014). Although these studies have not directly addressed
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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the androgen regulation of TLR expression or function,

they suggest that the association of TLR expression with an

increased risk of PCa development or recurrence could

reflect differences in degrees of AR activity, and they speak

to the effects that mainstay anti-androgen treatments

could have on driving the emergence of an EMyT

phenotype in PCa tumors.

In addition to TLRs, we have also recently reported the

up-regulated expression of the T cell checkpoint molecule

programmed death ligand 1 (PDL1) on enzalutamide-

resistant CRPC cells (Bishop et al. 2015). The interaction

between PDL1 or PDL2 and their receptor, PD1, which is

located on T cells, inhibits antitumor immune responses

and makes this pathway a key target of checkpoint

blockade immunotherapies, especially in cancer types

that up-regulate PDL1 on the surface for immune evasion

(Sharma & Allison 2015). Whereas PDL1 on CRPC patient

tumors has been difficult to detect or non-existent

(Brahmer et al. 2010, Topalian et al. 2012, Taube et al.

2014), the expression of other inhibitory molecules in the

B7 family, such as B7H3, correlate with poor prognosis in

PCa (Zang et al. 2007). Furthermore, we have shown that

the up-regulation of many B7 family members, including

PDL1, may be unique and specific to anti-androgen-

resistant CRPC (Bishop et al. 2015). In addition, PDL1

was not the only immune marker expressed by these

enzalutamide-resistant cells. Transcriptome profiling of

these unique cell lines has indicated that they harbor a

genetic signature that is associated with the differentiation

and maintenance of myeloid cells from the hematopoietic

compartment. For example, enzalutamide-resistant cells

showed a marked up-regulation of genes that encode for

the antigen presentation HLA complexes, which are cell

surface markers and cytokines that are characteristic of

myeloid cells, such as FLT3/L, BDCA3, CD11B, IL12, and

IL15, as compared to CRPC controls (Fig. 1A). Moreover,

these cells were characterized as overexpressing genes that

encode transcription factors associated with the develop-

ment of dendritic cells (DCs) and/or monocytes from

common myeloid precursors, including interferon

response elements (IRFs), inhibitor of differentiation

factors (ID1–ID3), Ikaros (IKZF1), BATF3, and RELB

(Fig. 1B). Importantly, the PDL1 expression and myeloid

markers presented in that study were only up-regulated in

enzalutamide-resistant CRPC cells that showed inacti-

vation of the classical AR pathway (Bishop et al. 2015),

which suggests that as with TLR expression, the androgen

axis may control checkpoint molecule expression in PCa.

The full extent of how myeloplastic cells affect PCa

progression has yet to be defined; however, mounting
Published by Bioscientifica Ltd.
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Figure 1

Myeloid differentiation signature in enzalutamide-resistant (ENZR) CRPC.

Total RNA was isolated from ENZR or CRPC cells shown to have low AR

activity (Bishop et al. 2015), and transcriptomic profiling using microarray

was performed. Heat maps show that fold change in the gene expression of

myeloid cell surface marker or cytokines (A) and the transcription factors

required for myeloid cell differentiation (B) are up-regulated in ENZR cells

as compared to CRPC (Z1).
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evidence suggests that the expression of myeloid markers

alters the way tumors respond to and manipulate their

microenvironments. For example, beyond inhibiting

T cell responses, tumor-intrinsic PDL1, which is up-regu-

lated after chemotherapy or targeted therapy, can ‘reverse

signal’ to prevent apoptosis (Azuma et al. 2008), thereby

enhancing tumor survival. Reciprocally, MYD88

expression in the spontaneous PCa TRAMP tumor model

dictates the immune infiltrate into tumors by recruiting

myeloid-derived suppressor cells and inhibiting NK cell

populations, which promotes PIN and tumor progression

(Peek et al. 2015). Manipulation of NK cell function has

also been demonstrated in other studies, which indicate

that the expression of the NK cell activating ligand NKG2D

by PCa tumor-derived exosomes selectively down-

regulates NKG2D expression on circulating NK and

cytotoxic T cells; this prevents their antitumor activity

in vitro (Lundholm et al. 2014). Our previous results also

suggested a correlation between tumor-intrinsic myeloid

marker expression and manipulation of the immune

compartment, seeing as we found that only enzaluta-

mide-resistant CRPC tumor cells that express PDL1 were

able to prevent DC infiltration into tumors and increase

the frequency of circulating DC expression of PDL1 and

PDL2 in vivo (Bishop et al. 2015). Again, this cross-talk

between tumor and immune cell checkpoint expression

may be dictated to some degree by AR activity, seeing as

only enzalutamide-resistant tumors with low AR activity
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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had these effects on circulating or tumor-infiltrating DCs

(Bishop et al. 2015). We also found that patients who

progressed on enzalutamide had significantly increased

PDL1/2C DCs in their blood as compared to those who

were naı̈ve or responded to treatment, and in progressing

patients, more PDL1/2C DCs were associated with a poorer

initial response to enzalutamide and longer treatment

duration (Bishop et al. 2015). Together, these studies

suggest that further experiments in both patients and

in vivo PCa tumor models should be conducted to evaluate

how EMyT contributes to disease progression in the

androgen-dependent, CRPC, and anti-androgen phases

of PCa.
Tumor cell plasticity: neuroendocrine
transdifferentiation

The correlation between altered AR expression and/or

activity and a change in PCa tumor cell phenotype is best

exemplified by the progression of PCa adenocarcinoma

to neuroendocrine PCa (NEPC). Although the healthy

prostate contains neuroendocrine cells, there is little

scientific evidence to support the idea that these cells

undergo transformation to give rise to NEPC (Terry &

Beltran 2014). Instead, multiple studies have suggested

that under the selective pressure of potent AR inhibition in

late-stage CRPC, PCa adenocarcinoma ‘transdifferentiates’

to NEPC (Lin et al. 2014), which does not at all rely on AR

for survival or proliferation. This transdifferentiation

process is defined by a number of pathological and clinical

features (Epstein et al. 2014) as well as molecular

alterations that indicate the adenocarcinoma origin of

NEPC, such as TMPRESS2–ERG rearrangements (Lapuk

et al. 2012, Logothetis et al. 2013), the loss of AR and/or

AR-regulated target genes, the loss of RB1, the amplifi-

cation of NMYC and AURKA, and the induction of neural

differentiation programs (Beltran et al. 2011, Logothetis

et al. 2013, Park et al. 2014). Full reviews on NEPC can be

found elsewhere (Tagawa 2014, Terry & Beltran 2014,

Vlachostergios & Papandreou 2015); however, in the

following sections, we outline key studies that show

the relationship between the NEPC transdifferentiation

process and AR.
AR regulation of NEPC

The rise in incidences of non-AR-driven CRPC, which may

include up to 25% of patients with late-stage PCa and does

include men with NEPC (Aparicio et al. 2011), underscores

how AR activity dictates tumor cell plasticity at every stage
Published by Bioscientifica Ltd.
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of PCa progression. Indeed, multiple potential ‘drivers’ of

NEPC have been identified, almost all of which precede,

accompany, or are controlled by a loss of AR expression or

activity. For example, although the AR is a major regulator

of PCa cell proliferation, in NEPC models without AR

expression, mitotic deregulation that leads to hyperproli-

feration occurs upon the loss of RB1 and cyclin D1, which

suggests that the loss of this key tumor suppressor pathway

may actually precede the AR loss that is observed in NEPC

(Tzelepi et al. 2012). Indeed, up to 90% of NEPC tumors

lack RB1 (Tan et al. 2014), which highlights the import-

ance of cell cycle regulators in this disease. In addition, the

mitotic phase kinase AURKA controls NEPC, which in turn

is regulated by NMYC (Beltran et al. 2011) as well as REST

(Svensson et al. 2014), both of which are inversely

correlated with AR in PCa (Lapuk et al. 2012). Moreover,

pathways that are known to also feedback on the AR, such

as IL6 and cAMP signaling, can drive an NE phenotype in

LnCaP cells (Cox et al. 2000, Spiotto & Chung 2000).

Indeed, prolonged exposure to IL6 can reduce AR

expression (Debes et al. 2005), which further suggests

that there is an important link between this cytokine and

an AR-negative NEPC phenotype. In addition, a number of

genes are up-regulated after ADT, and they are thus

presumed to be androgen-suppressed and are associated

with a progression to NEPC or non-AR-driven ‘anaplastic’

CRPC, including ARG2 (Kani et al. 2013), hASH-1 (Rapa

et al. 2013) and protocadherins (Terry et al. 2013).

Importantly however, although many studies have

shown an inverse correlation between NEPC and AR

expression or activity, no reports have indicated a direct

mechanism by which a loss of AR actually drives this

phenotype.
Tumor cell plasticity: overlap in aggressive cell
phenotypes

Because the AR clearly plays a role in directing the CSC,

EMT, EMyT, and NEPC phenotype and/or functions of PCa

cells, it is not surprising that ADT induces the up-regula-

tion of CSC, NEPC, and EMT markers simultaneously.

Indeed, many reports in PCa as well as other cancers have

shown a correlation between the expression of EMT and

CSC markers within the same cells. For example, after

androgen deprivation, both EMT and CSC populations

have been shown to increase in mouse prostates and PCa

cells (Scheel & Weinberg 2012). Likewise, PCa cells that

were induced to an EMT phenotype, or CSCs that were

isolated from PCa cell lines, have been shown to strongly

up-regulate transcription factors expressed by CSCs and
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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markers of EMT respectively, and they have been found to

be highly tumorigenic in mice (Kong et al. 2010, Salvatori

et al. 2012). In the aforementioned studies wherein ADT

induced EMT, the authors also observed increases in CSC

as well as NEPC characteristics (Sun et al. 2012).

Reciprocally, LNCaP C-33 cells, which have an NE

phenotype, express higher levels of the EMT transcription

factor SNAIL, and the overexpression of SNAIL in LNCaP

cells increases terminal markers of NE differentiation

(McKeithen et al. 2010). Other studies have shown that

AR splice variants simultaneously induce EMT and stem

cell markers in PCa. In ADT culture conditions (CSS), AR

and AR3 (ARV7) as well as the EMT/CSC markers LIN28B,

NANOG, and SOX2 and EMT markers, such as ZEB1,

TWIST, N-cadherin, and vimentin, are overexpressed (Kong

et al. 2015). The authors also indicated that AR3 expression

was positively correlated with LIN28 in PCa patient

tumors and suggested that the AR3 inhibitor BR-DIM

acts as a novel agent to inhibit AR, AR variants, and cancer

stem cell markers in PCa (Kong et al. 2015). The overlap of

CSC and EMT markers also occurs in mouse models of PCa:

ADT has been shown to promote EMT and the expression

of the CSC marker Cd44 in castrated TRAMP mouse

tumors. Seeing as a defining feature of stem cells is their

pluripotent potential to give rise to other cell types, it is

not surprising that the authors suggested that a switch

from CD44C cells to EMT cells is the driver of metastasis

in PCa; they showed that this switch occurs through a

TGFb1–CD44 signaling pathway (Shang et al. 2015).

Future studies should further this work to determine

whether CSCs are truly precursors or are required for the

induction of EMT, EMyT, or NEPC phenotypes in PCa

cells, especially under ADT conditions.

Like the close association between cells that undergo

traditional EMT and CSCs, myeloplastic cancer cells may

also share CSC and/or mesenchymal phenotypes.

Although this concept has been less explored in PCa,

examples have been found in other solid tumor types that

may be relevant to PCa studies. For example, basal breast

cancers, which are highly enriched for CSCs (Foulkes et al.

2010), have the highest expression of PDL1 as compared to

other breast cancer subtypes (Soliman et al. 2014), and

20% of triple negative breast cancer (TNBC) cases, of

which about 80% are basal, express PDL1 (Mittendorf et al.

2014). This suggests that enzalutamide-resistant tumor

cells, in which PDL1 is expressed, may have either CSC or

EMT traits, and this would be in accordance with their low

AR activity. Beyond the overlap between CSC and immune

markers, EMyT in tumor cells may actually support

mesenchymal or stem cell properties. For example,
Published by Bioscientifica Ltd.
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NKG2D expression in breast cancer has been shown to

drive EMT and to support CSC maintenance via the

transcription factor SOX9 (Cai et al. 2014). Because NKG2D

exists on PCa exosomes, an intriguing hypothesis may be

that in addition to driving immune suppression, exosomal

NKG2D supports tumor cell EMT and CSCs via a paracrine

mechanism. Functionally, this strong overlap between

CSC and myeloplastic phenotypes might dictate tumor

progression by affecting how these tumors interact with

the immune response. Murine metastatic lung cancer that

was selectively passaged in vivo because of its ability to

evade immune responses in vaccinated mice expressed

high levels of CSC markers (Noh et al. 2012), and the

pluripotency transcription factor NANOG is required to

protect tumor cells from cytotoxic T cell death both in vitro

and in vivo (Mao et al. 2014). Intriguingly, in one study, up

to 50% of small-cell lung cancer patients mounted

antigen-specific T cell responses to another stem cell

transcription factor, SOX2, and these responses were

associated with tumor regression after immunotherapy

against PD1 (Dhodapkar et al. 2013). In PCa, SOX2 has also

been identified as a tumor-associated antigen (TAA) (Shih

et al. 2014). These studies seem to bring full circle the

association between strong PDL1 expression by solid

tumor types and CSC properties, and they suggest that

immune correlates of response to or progression with

therapies may also benefit from investigating the CSC

phenotype of tumors.
Targeting androgen response-driven cellular
plasticity to improve patient outcomes

Suppressing AR signaling remains the focus of therapeutic

strategies for advanced PCa, which is justified given the

success of second-generation anti-androgens such as

enzalutamide. Despite these advancements, many patients

are impervious to further targeting of AR signaling, and

none have been cured. This probably reflects the hetero-

geneity and plasticity of lethal prostate tumors, which are

comprised of a mixed population of cells with varying

degrees of AR expression. Notably, prostate CSCs probably

have reduced AR signaling (Qin et al. 2012) and are believed

to be intricately linked to EMT, EMyT, and metastasis (Mani

et al. 2008). These observations support the process of

co-targeting cellular plasticity as a rational therapeutic

strategy for suppressing metastasis and CRPC. A list of

potential agents is provided in Table 1.

Given the significant overlap between the plastic

phenotypes of PCa tumor cells and the potential for

CSCs to be the source of these phenotypes, targeting key
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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molecules and signaling pathways that sustain prostate

CSCs could lead to the development of new therapies that

improve clinical disease management. One exciting

preclinical study found that the inhibition of the hedge-

hog signaling pathway using the smoothened inhibitors

cyclopamine and GDC-0449 depleted the CSC population

and reduced CRPC xenograft growth (Domingo-Dome-

nech et al. 2012). More recent work uncovered the

therapeutic potential of inhibiting MYC, a transcription

factor with a central function in the maintenance of CSCs

and NEPC. Using a novel in vivo delivery system, Civenni

et al. (2013) demonstrated that the systemic delivery of

Myc-targeted siRNA to mice bearing PC-3 CRPC xenografts

reduced the CSC population and suppressed tumor growth

and metastasis. Although MYC inhibitor design has been

difficult because of the absence of a clear ligand binding

domain, BET inhibitors have been shown to reduce MYC

expression in PCa models (Wyce et al. 2013) and have

demonstrated astounding therapeutic efficacy in blocking

CRPC tumor growth (Asangani et al. 2014). Alternatively,

targeting EZH2 has gained traction within the sphere of

CSC-directed therapy. In LNCaP and PC-3 cells, EZH2 was

found to be up-regulated specifically within the

CD44C/CD133C CSC population (Sun et al. 2013), and

DZNep, which induces the degradation of EZH2, eradi-

cated the CSCs and attenuated DU145 CRPC tumor

growth (Crea et al. 2011). GlaxoSmithKline is currently

testing a highly specific EZH2 inhibitor, GSK2816126, in a

phase I clinical trial for relapsed/refractory lymphoma.

Interestingly, their preclinical studies showed that glio-

blastoma stem cells responded well to this inhibitor (Kim

et al. 2013), which suggests that it could be repositioned to

eradicate prostate CSCs. Finally, STAT3 inhibitors have

also been shown to reduce CSC populations; galiellalac-

tone was able to reduce ALDH-positive PCa cells (Baritaki

et al. 2009, Hellsten et al. 2011), and another STAT3

inhibitor, LLL12, has been shown to reduce the CSC

phenotype in patient-derived castrate-resistant tumors

(Kroon et al. 2013).

In addition to these small-molecule inhibitors of

CSCs, a major avenue of exploration in other cancers

that could translate to CRPC treatments is the use of

immunotherapies to target CSC populations. For example,

in glioblastoma, CD133 has been shown to be a TAA (Ji

et al. 2014), as has SOX2 in small-cell (Gure et al. 2000,

Vural et al. 2005, Shih et al. 2014) and non-small-cell

(Dhodapkar et al. 2013) lung cancer. Antigen-specific

T cells in both cases were able to induce CSC killing,

which makes them strong potential vaccine candidates. In

head and neck, breast, and pancreatic cancer, the transfer
Published by Bioscientifica Ltd.
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Table 1 Opportunities for therapeutic targeting of cellular plasticity

Plasticity factor Drug Mode of action Clinical trials

Hedgehog Cyclopamine Directly binds to and inhibits the
smoothened receptor to
antagonize hedgehog signaling

Preclinical

GDC-0449 Phase I/II combination study with hormone
therapy in locally advanced PCa
(NCT01163084)

Phase I pharmacokinetic study in mCRPC
(NCT02115828)

MYC JQ1 Targets BET bromodomain proteins
that are required for the tran-
scriptional activation of MYC

Preclinical

I-BET762
(GSK525762)

Phase I dose escalation study in acute leukemia
(NCT01943851)

TEN-010 Phase I dose escalation study in advanced solid
tumors (NCT01987362)

EZH2 DZNep Degrades PRC2 complex Preclinical
EI1 Inhibits histone methyltransferase

activity
Preclinical

EPZ-6438 (E7438) Phase I/II combination study with standard
chemotherapy in advanced solid tumors and
B cell lymphoma (NCT01897571)

GSK2816126 (GSK126
analogue)

Phase I dose escalation study in relapsed/
refractory lymphoma malignancies
(NCT02082977)

PKC/TWIST Ro31-8220 Inhibits PKC Preclinical
N-cadherin ADH-1 Inhibits N-cadherin Phase I study of Exherin (ADH-1) in advanced

solid tumors. (NCT00265057)
STAT3 Galiellalactone or

LLL12
Inhibits STAT3 transcriptional

activity
Preclinical

HSP27 OGX-427 Inhibits HSP27 Phase II study of OGX-427 in CRPC
(NCT01120470)

Silibinin Induces MET Preclinical
NF-kB/SNAIL/RKIP NPI-0052 Inhibits the proteasome Phase I study in advanced solid tumor

malignancies or refractory lymphoma
(NCT00396864)

Androgen receptor
variant AR3

BR-DIM Reduces the expression of AR3 and
EMT markers

Phase I dose-escalation study of oral
BioResponse 3,3 0-Diindolylmethane
(BR-DIM) in nmCRPC

ARV7 EPI-001 Blocks AR NTD transcriptional
activity

Preclinical

Cadherin-11 mAbs 2C7 and 1A5 Monoclonal antibody that targets
cadherin-11

Preclinical

RSC (yeast)-Twist
vaccine

Induces TWIST-specific cytoxic T cells Preclinical

Brachyury MVA-brachyury-
TRICOM vaccine

Induces Brachyury-specific cytotoxic
T cells

Phase I study in advanced tumors (prostate
included) (NCT02179515)

PD1 CT-001 Monoclonal antibody that blocks
PD1 ligation

Phase II study of CT-001, Provenge, and
cyclophosphamide in CRPC (NCT01420965)

PDL1 MSB0010718C Monoclonal antibody that blocks
PDL1 ligation

Phase I study in CRPC (NCT01772004)

AURKA MLN8237 Inhibits AURKA Phase II study in mCRPC and NEPC
(NCT01799278)

Phase I study of Docetaxel in CRPC
(NCT01094288)
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of autologous CD8T cells specific for recognizing the stem

cell enzyme ALDHA1A have also been shown to have

antitumor efficacy. Seeing as SOX2 has also been identified

as a TAA in PCa (Shih et al. 2014), and seeing as PCa CSCs
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0137 Printed in Great Britain
express both CD44 and ALDHA1A, it may be that such

immunotherapies could work against PCa CSCs as well.

A major caveat of these therapeutic targets is that they

are not ‘pure’ CSC factors; rather, they are shared with
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normal stem cells. Therefore, a more optimal strategy

might be to exploit the fact that prostate CSCs express

unique cell surface markers, such as CD44 and CD133, by

targeting drugs specifically to these cells. CD44-targeted

nanoparticles carrying MDR1 siRNA have demonstrated

efficacy in sensitizing ovarian cancer cells, as well as the

CSCs, to paclitaxel in vivo (Yang et al. 2015). Nanoparticles

are also capable of delivering anticancer therapeutics to

CSCs; for example, CD133-coated nanoparticles carrying

paclitaxel significantly reduced the CSC burden and

lowered the rate of tumor relapse in a breast cancer

xenograft model (Swaminathan et al. 2013). Although this

technology is still in its infancy, it shows great promise for

tumor cell-specific targeting.

Another approach to mitigating the adverse side

effects of CSC targeting is to inhibit other aspects of

CRPC tumor cell plasticity, such as EMT, NEPC, or
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Figure 2

Targeting tumor cell plasticity in prostate cancer. Under the selective

pressure of androgen deprivation, adenocarinoma of the prostate may

involve heterogeneous populations of tumor cells, including cancer stem-

like cells, cells undergoing epithelial-to-mesenchymal (EMT) or myeloid

transition (EMyT), and neuroendocrine-like (NE) like cells. These cell types

are interrelated, and the phenotypes may be dynamic, thereby underlying

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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immune evasion, more directly. Targeting EMT markers

such as b-catenin, fibronectin, cadherin-11, or vimentin

has been proposed as a potential strategy for reducing

CRPC cell viability. For example, the therapeutic targeting

of N-cadherin with a MAB has been shown to successfully

delay PCa progression by reducing PC-3 and castrate-

resistant LAPC4 tumor xenograft growth and invasion

(Tanaka et al. 2010). In addition, targeting the mesench-

ymal marker cadherin-11 with an antibody was recently

reported to reduce bone metastases in a PC3-mm2

xenograft model (Lee et al. 2013b). In addition, proteins

and signaling pathways that control EMT have also been

suggested to be potential drug targets in PCa cells that

have EMT phenotype. For example, the proteasome

inhibitor NPI-0052 is able to inhibit the NF-kB/SNAIL/

RKIP pathway in metastatic PCa (Baritaki et al. 2009).

In addition, the Hsp27 inhibitor OGX-427, which is
like cells 

NE-like cells 

EMT 
CRPC/Anaplastic PCa/
NEPC

B1
ST
G
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010718C 
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the phenotypic plasticity of tumor cells that have become therapy resistant.

Strong evidence suggests that each cell type or plasticity between cell types

contributes to prostate cancer progression to CRPC or anaplastic/NEPC.

Therapies that target the mechanistic drivers of cellular plasticity and are

currently under preclinical and clinical development are highlighted.
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currently in clinical trials, may be a potential means of

targeting the b-catenin/SLUG and STAT3/TWIST signaling

pathways in PCa, and it could thus inhibit EMT (Shiota

et al. 2013, Cordonnier et al. 2015). TWIST can also be

targeted using the PKC inhibitor Ro31-8220, which

reduces TWIST signaling and the viability of LNCaP and

castration-resistant C4-2 and 22Rv1 cells in combination

with anti-androgen enzalutamide (Shiota et al. 2014).

Interestingly, TWIST may also be a viable immunotherapy

target; recently TWIST was shown to be a TAA in the

TRAMP-C2 subcutaneous model of murine PCa, and

combined treatment of TRAMP-C2 xenografts in vivo

with enzalutamide and a TWIST-specific vaccine signi-

ficantly reduced tumor burden (Ardiani et al. 2013).

Similarly, the T-box transcription factor Brachyury,

which drives EMT in many cancers (Fernando et al.

2010), has been identified as another PCa TAA, and

yeast-based Brachyury vaccines are currently in develop-

ment for the treatment of CRPC (Hamilton et al. 2013). In

addition, targeted therapies are in development to prevent

identified drivers of NEPC and checkpoint molecule

expression by tumors. These include aurora kinase and

somatostatin inhibitors as well as PDL1 and PD1 mono-

clonal antibodies. Table 1 presents a list of agents that

target cellular plasticity in PCa and other tumor types.

Although we have divided these agents by their ability

to modulate a particular plasticity state, like CSCs, cells

undergoing EMT, or NEPC, it is clear from the ubiquitous

signaling pathways they affect that these inhibitors most

likely have the benefit of targeting multiple cell popu-

lations. This is underscored by the significant overlap

between plastic CRPC cell phenotypes and the intimate

relationships between the AR-controlled plasticity

pathways. For example, the importance of ARV7 in driving

therapy resistance has recently been reported (Antonarakis

et al. 2014); thus, targeting variants with novel therapies

such as Epi-001 (Myung et al. 2013, Martin et al. 2014) and

BR-DIM have gained considerable momentum. Although

the goal of these therapies would be to prevent ligand-

independent AR activity, which drives the growth and

proliferation of AR variant-expressing tumors, the ability

of AR variants to drive EMT may suggest that these

inhibitors can prevent metastases or reduce CSCs. Indeed,

BR-DIM has been shown to inhibit both AR variants and

stem cell and EMT markers in PCa (Kong et al. 2015). In

addition, although the use of bromodomain inhibitors,

such as JQ1, clearly have shown efficacy in reducing AR

activity (Asangani et al. 2014), the close association

between BRD4 and the genes that control stem cell

properties and NEPC, such as MYC (Di Micco et al. 2014,
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0137 Printed in Great Britain
Rodriguez et al. 2014), may mean that bromodomain

inhibitors could simultaneously prevent AR signaling and

the emergence of cell types that are associated with a loss

of AR activity. Importantly however, we are unaware of

any potential adverse side effects that targeting multiple

tumor cell populations may have, such as putting strong

selective pressure on various signaling pathways, which

could lead to emergent mechanisms of resistance.
Conclusion

Overall, heterogeneous cell populations in tumors dictate

the severity of disease by playing different roles in

response to anticancer therapies, regeneration and

proliferation, metastasis, and immune modulation. In

PCa, AR expression and activity regulates CSCs, EMT,

EmyT, and transdifferentiation to NEPC, and thus novel

AR targeting agents may inhibit AR functioning as a

central driver of tumor cell phenotypic plasticity. Further-

more, combined approaches that target the AR as well as

individual CSC, NEPC, EMT, or immune evasion modu-

lators will most certainly play a role in the treatment

landscape of CRPC in the future. With the mounting

evidence about the molecular mechanisms that underlie

how different cell types emerge during CRPC and

therapeutic resistance, and with the significant number

of novel agents directed against these mechanisms that

are currently in preclinical and clinical phases of

development, we may be able to eliminate unique and

aggressive PCa tumor cells to prolong survival in CRPC

patients (Fig. 2).
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