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Abstract
Prostate cancer (PCa) is the most common malignancy affecting men in the western world.

Although radical prostatectomy and radiation therapy can successfully treat PCa in the

majority of patients, up to w30% will experience local recurrence or metastatic disease.

Prostate carcinogenesis and progression is typically an androgen-dependent process. For this

reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor

function. Such androgen deprivation therapies (ADT) are effective initially, but the duration

of response is typically %24 months. Although ADT and taxane-based chemotherapy have

delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to

establish the cellular and molecular mechanisms that enable localized PCas to invade and

disseminate. It has long been accepted that metastases require angiogenesis. In the present

review, we examine the essential role for angiogenesis in PCa metastases, and we focus in

particular on the current understanding of the regulation of vascular endothelial growth

factor (VEGF) in localized and metastatic PCa. We highlight recent advances in under-

standing the role of VEGF in regulating the interaction of cancer cells with tumor-associated

immune cells during the metastatic process of PCa. We summarize the established

mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and

outline the molecular insights obtained from preclinical animal models of PCa. Finally, we

summarize the current state of anti-angiogenesis therapies for PCa and consider how

existing therapies impact VEGF signaling.
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Prostate cancer: the molecular mechanisms of
carcinogenesis and the role of androgens

Prostate cancer (PCa) is the most common malignancy

affecting western men (Ferlay et al. 2013, Siegel et al. 2015),

and it is estimated to account for more than 220 000 new

cases and 27 000 deaths in the USA in 2015. Advances in
early diagnosis (Carter et al. 2013, Heidenreich et al. 2013),

surgical, radio-, chemo-, and immunotherapies (reviewed

in Lorente & De Bono (2014) and Stewart & Boorjian

(2014)) are improving patient survival. However, the aging

demographics of western countries suggest that PCa will

remain a leading cause of cancer-related mortality in men.
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Although O90% of PCa cases are diagnosed as androgen-

responsive acinar adenocarcinoma (Humphrey 2012), the

disease is clinically heterogeneous. Indeed, it is currently

not possible to accurately distinguish high-risk prostate

tumors, which require extensive therapeutic intervention,

from low-risk indolent tumors, many of which do not

require any therapy (Draisma et al. 2009, Cuzick et al. 2014,

Tombal et al. 2014, Weiner et al. 2015). Therefore, most

men with clinically localized PCa undergo radical prostat-

ectomy or radiotherapy with curative intent (Boorjian et al.

2012, Heidenreich et al. 2014). Yet, it has been estimated

that between 20 and 30% of cases will experience

recurrence (Boorjian et al. 2012). Following local recurrence

and metastasis, androgen deprivation therapy (ADT),

which is achieved medically or through orchiectomy, is

typically effective for !24 months, by which time

progression to the more detrimental form of castrate-

resistant PCa (CRPC) is common (Ahmed et al. 2014).

At that point, PCa becomes hormone refractory, and

cancer cells acquire the ability to invade and metastasize

to lymph nodes and distant organs (Wegiel et al. 2005).

The importance of androgen signaling in prostate

carcinogenesis has long been recognized (Huggins &

Hodges 1941). In the intervening decades, it became

apparent that androgen signaling plays an essential role

in localized and metastatic PCa (Wang et al. 2009). The

androgen receptor (AR) is a member of the ligand-

dependent transcription factor family of nuclear receptors,

which also includes the estrogen (ERa/ERb) and pro-

gesterone (PR) receptors, lipophilic ligands (retinoids,

vitamin D), and orphan receptors for which ligands have

not been identified. In the presence of an agonist, nuclear

receptors regulate gene expression by recruiting epigenetic

coregulator proteins with histone lysine acetyltransferase

(KAT), methyltransferase (KMT), and demethylase (KDM)

activity. Consistent with the essential role played by

androgens and the AR in hormone-dependent (Yu et al.

2010) and refractory PCa (Wang et al. 2009), nuclear

receptor coregulators have also been implicated in prostate

carcinogenesis and progression (Debes et al. 2003, Rahman

et al. 2003, Heemers et al. 2007). KDMs are key coregulators

of AR and ER transcriptional activation and repression

(Cheng & Blumenthal 2010, Kooistra & Helin 2012). A

subset of KDMs, including KDM1A/LSD1, are overex-

pressed in PCa (Metzger et al. 2005, Kahl et al. 2006,

Kashyap et al. 2013). Although KDM1A acts predominantly

as a transcriptional corepressor, it can act as a coactivator

for AR (Metzger et al. 2005) and ERa (Perillo et al. 2008),

depending on promoter context (Cai et al. 2011). Consist-

ent with this, there is evidence that KDM1A can contribute
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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to hormone refractory PCa by sensitizing prostate cells to

lower androgen levels (Cai et al. 2011, 2014). ARs and ERs

are known to cooperate in gene regulation in PCa and can

define transcriptional signatures associated with aggressive

disease (Setlur et al. 2008). As we discuss in detail later in the

present review, KDM1A appears to promote PCa recurrence

in part by enhancing androgen-regulated VEGF expression

(Kashyap et al. 2013). With a clear clinical need for new

treatments, nuclear receptor epigenetic coregulators and

related proteins are attractive therapeutic targets because

of their feasibility as ‘druggable’ targets (Dawson &

Kouzarides 2012, Asangani et al. 2014, Rotili et al. 2014).

For this reason, recently identified coregulator com-

ponents of the AR-signaling complex represent potential

new targets for circumventing resistance to existing

therapies.

ADTs are the standard treatment for locally advanced

and metastatic PCa. ADT targets AR signaling pathways,

which are central to the gene expression programs that

drive prostate tumor growth and metastasis. AR signaling

persists in hormone refractory PCas that are resistant to

ADT (Wang et al. 2009). Although ADTs impede tumor

progression, hormone refractory cancers bypass androgen

dependency and remain incurable. Recently introduced

CRPC therapies include abiraterone, an inhibitor of a

key enzyme in androgen biosynthesis, and the potent AR

antagonist enzalutamide. Although both abiraterone and

enzalutamide have demonstrated survival benefits in the

CRPC context, the duration of response to these agents

remains disappointing (de Bono et al. 2011, Scher et al.

2012). Furthermore, one consequence of prolonged

systemic androgen blockade is the increasing emergence

of neuroendocrine (NE) PCa, which is associated with

aggressive disease and poor prognosis (Beltran et al. 2011).

Although we now have unparalleled insight into the

genomic complexity of PCa (Berger et al. 2011, Barbieri

et al. 2012, 2013, Baca et al. 2013), there is therefore an

urgent need to exploit this knowledge with a view to

identifying novel approaches to prevent or delay PCa

metastases.
Transcriptional regulation of
pro-angiogenesis pathways in PCa

Pro-angiogenic pathways are essential mediators of tumor

growth and metastasis, and as a consequence, the

potential for therapies that target the tumor vasculature

has long been recognized (Folkman 1971, Folkman et al.

1971). Both normal and pathologic angiogenesis is

regulated predominantly by the vascular endothelial
Published by Bioscientifica Ltd.
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growth factors (VEGFA, VEGFB, VEGFC, and VEGFD) and

their cognate cell surface receptors (VEGFR1, VEGFR2, and

VEGFR3), which can also be activated by neuropilins

(Roskoski 2007). VEGF isoforms exhibit distinct receptor

affinities and activate the intracellular receptor tyrosine

kinase signaling cascade. The VEGFs and their receptors

also play a role in PCa lymphangiogenesis (Wong et al.

2005, Burton et al. 2008). In the present review, we focus

on the regulation and function of VEGFA (also referred to

as simply VEGF) in angiogenesis. VEGF is overexpressed in

a variety of hematological malignancies (Krejsgaard et al.

2006) and the vast majority of solid tumors, including PCa

(Wegiel et al. 2005) (Fig. 1), where it is associated with
A

(a) (d)

(b) (e)

(c) (f)

CyclinA1 VEGFA

Figure 1

(A) Immunohistochemical analysis of the expression of cyclin A1 (a, b and c),

vascular endothelial growth factor (VEGF) (d, e and f) and prostate-specific

antigen (PSA) (c, f and i) in benign prostate hyperplasia (a, d and g) and

moderately (b, e and h) and poorly differentiated (c, f and i) prostate cancer

(PCa) specimens. Adapted and reproduced, with permission from Macmillan

Publishers Ltd: Oncogene, from Wegiel B, Bjartell A, Ekberg J, Gadaleanu V,

Brunhoff C & Persson JL 2005 A role for cyclin A1 in mediating the autocrine

expression of vascular endothelial growth factor in prostate cancer.

Oncogene 24 6385–6393, copyright 2005. (B) Evaluation of VEGF in PCa

specimens. Tissue microarrays of sections from benign tissue and adjacent

tumor tissue designated as Gleason grade 3 (81%) or Gleason grades 4–5

(18%) were immunostained with antibodies against VEGF. Differences in the

expression of VEGF (tumor, nZ864; benign, nZ787), between groups were

assessed using the paired Wilcoxon signed rank test (P!0.001). The mean

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-15-0123 Printed in Great Britain
poorer outcomes (Duque et al. 1999, Green et al. 2007). In

PCa, in addition to its expression in blood and lymphatic

endothelial cells, VEGF is also expressed at low levels in

prostatic glandular epithelial cells and in nonvascular

cells, such as macrophages, fibroblast cells, and mast cells

(Hrouda et al. 2003). Chronic prostatic inflammation and

the infiltration of macrophages and other immune cells

that express high levels of VEGF are believed to be

important events during the malignant transformation.

The increased production of cytokines, such as inter-

leukin-6, is believed to induce VEGF expression in the

infiltrating immune cells (Cohen et al. 1996). It has been

shown that bacterial lipopolysaccharide induces the
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values of intensities of staining (horizontal lines) with error bars

representing 95% CIs for the mean are shown. The outliers are labeled by

open circles. The boxes represent the distribution of the expression of each

protein in the group. The dot plot shows the expression of genes encoding

VEGF in tumor specimens from patients with BPH (nZ6), primary PCa (nZ7),

and metastatic PCa (Met, nZ6), as analyzed by cDNA microarray. Differences

between metastatic cancers (Met) and nonmetastatic disease (benign PCa

and primary tumors in localized cancer) were assessed by the Mann–Whitney

U test. P values from two-sided tests are indicated. Adapted and reproduced,

with permission from Oxford University Press, from Wegiel B, Bjartell A,

Tuomela J, Dizeyi N, Tinzl M, Helczynski L, Nilsson E, Otterbein L, Härkönen P

& Persson JL. 2008 Multiple cellular mechanisms related to cyclin A1 in

prostate cancer invasion and metastasis. Journal of the National Cancer

Institute 100 1022–1036, copyright 2008.
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expression of Toll-like receptors (TLRs) in human prostate

epithelial PC3 cells after exposure to bacterial infection.

This increased expression of TLRs is able to induce VEGF

expression, which in turn triggers the proliferation and

migratory ability of PCa cells (Pei et al. 2008).

The VEGF promoter is regulated by multiple transcrip-

tion factor complexes, and the function of the hypoxia-

inducible factors in the regulation of VEGF expression is

well understood (Forsythe et al. 1996, Gray et al. 2005).

However, over the past decade, it has become apparent

that the VEGF promoter can be regulated by multiple

members of the nuclear receptor family, including the

AR (Eisermann et al. 2013), estrogen (ERa/cMyc) (Buteau-

Lozano et al. 2002, Dadiani et al. 2009), progesterone
A
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Figure 2

(A) The VEGF promoter is regulated by a diverse array of transcription

factors, hypoxia-inducible factors (HIFs), specificity protein-1 (Sp1), and

most notably in the context of the present review, multiple nuclear

receptors, including androgen (Eisermann et al. 2013) and estrogen

(Buteau-Lozano et al. 2002, Dadiani et al. 2009), which are indicated in red

and yellow respectively. In addition, the VEGF promoter is regulated by

progesterone (Wu et al. 2004), vitamin D (Cardus et al. 2009), and the liver-

X nuclear receptors (LXR) (Walczak et al. 2004). Nuclear receptors recruit

multiple enzymatically diverse epigenetic coregulators, including

http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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(Wu et al. 2004), vitamin D (Cardus et al. 2009), and the

liver-X receptors (Walczak et al. 2004). Consistent with

this, animal studies have indicated a role for androgens

and estrogen in prostate vascularization (Daehlin et al.

1985). In this context, it is interesting to note that nuclear

receptor–coregulator complexes can regulate splicing

events (Auboeuf et al. 2002, 2004). Thus, a role for the

aberrant recruitment of nuclear receptor complexes to the

VEGF promoter in the induction of pro-angiogenic VEGF

splicing during carcinogenesis cannot be excluded (Fig. 2).

Interestingly, recent studies have identified pro- and

anti-angiogenic VEGF splice forms (Bates et al. 2002),

which are differentially regulated in cancers, including in

PCa (Woolard et al. 2004, Mavrou et al. 2014), and which
HIF1 Sp1 TFIIs

RNA pol II
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Poly-A sitesPoly-A sites

AAA AAA
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p160/p300 lysine acetyltransferase, demethylases that cooperate with the

mediator complex to stabilize recruitment of the basal transcriptional

machinery, and RNA polymerase II. (B) Evidence from genome-wide

chromatin immunoprecipitation studies indicate the recruitment of AR in

LNCaP, 22Rv1, VCaP PCa cells (GSM698597) (Sharma et al. 2013), and ERa

in VCaP (GSM1076110) (Chakravarty et al. 2014) to the VEGF promoter.

(C) Positions of microRNA target sites and internal ribosome entry sites

(IRES) in relation to the coding sequence of the VEGF.
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may be key to the development of future therapies that

target pro-angiogenic VEGF function (Harper & Bates

2008). In the terminal exon of the VEGF gene (exon 8),

there are two potential splice sites. A proximal splice site

(PSS) encodes six amino acids (CDKPRR) before a stop

codon is reached, which results in isoforms such as

VEGFA165a. The use of the PSS results in the generation

of angiogenic isoforms that increase vascular per-

meability, stimulate vessel growth, and result in vasodila-

tation. Further into the terminal exon, a distal splice site,

66 bases downstream of the PSS, results in an alternative

open reading frame of the same size (six amino acids,

SLRTKD), which in turn results in a different C-terminus to

the protein. Furthermore, VEGFA165b switches the protein

to an anti-angiogenic one that can inhibit vasodilatation

(Woolard et al. 2004) and reduce permeability (Oltean

et al. 2012). The splice variants are differentially regulated

(e.g., SRPK1 stimulates splicing to VEGFA165a, and Clk1/4

stimulates splicing to VEGFA165b) (Nowak et al. 2008,

2010) and are differentially regulated post-transcription-

ally – for example, by T-cell intracellular antigen-1, an

RNA-binding protein that differentially regulates trans-

lation and splicing of VEGF through activation by Ras

(Hamdollah Zadeh et al. 2015).
Post-transcriptional regulation of VEGF
signaling in PCa

Regulation of VEGF expression can occur at multiple points

between transcription and translation. These regulatory

effects broadly fall into three different areas: pre-mRNA

processing (alternative splicing, as discussed in the

previous section), mRNA transcript stability, and control

of translation. The latter two categories are discussed in the

present section, with a focus on the mechanisms of VEGF

post-transcriptional regulation in PCa.

Variations in mRNA transcript stability are commonly

seen as cellular responses to environmental changes, such

as stress and nutrient availability; they act as rapid

responses in order to maintain protein homeostasis.

VEGF is tightly regulated at the transcript level, and

although its reported half-life is short (15–40 min

in vitro),this can be substantially extended during periods

of hypoxia and nutrient withdrawal (Ikeda et al. 1995,

Shima et al. 1995, Levy et al. 1996, Dibbens et al. 1999).

AU-rich elements within the 3 0UTR of the VEGF transcript,

along with other elements within the coding and UTRs,

are potential targets for a range of RNA-binding proteins

that have been shown to result in both positive and

negative effects on transcript stability (Claffey et al. 1998,
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Shih & Claffey 1999, King 2000, Goldberg-Cohen et al.

2002, Coles et al. 2004, Onesto et al. 2004, Fellows et al.

2012, Chang et al. 2013). Hypoxia-dependent regulation

of transcript stability has been well characterized in a

number of cancer types and was recently reviewed by

Arcondeguy et al. (2013).

Interestingly, two less well-characterized methods of

hypoxia-independent regulation of VEGF transcript sta-

bility have been observed in studies of PCa. The first

occurred when DU145 PCa cells were subjected to glucose

deprivation. Under these conditions, VEGF transcript

stability was increased as a result of the stimulation of

AMP-activated protein kinase through a mechanism that

is still unknown (Yun et al. 2005). In addition to this, an

isoform of the Wilms’ tumor suppressor gene (WT1-A) was

found to modestly increase VEGF transcript stability in

a hormone-enhanced mechanism when WT1 was stably

overexpressed in LNCaP PCa cells. Overexpression of other

WT1 isoforms the lacked the third of fourth zinc finger

domains was unable to mediate VEGF stability, which

indicates the potential importance of zinc finger domains

in this regulatory mechanism (Cash et al. 2007).

Eukaryotic protein translation predominantly depends

on the m7G cap structure of the mRNA and assembly of the

translation initiation complex (cap-dependent trans-

lation). However, alternative mechanisms of cap-indepen-

dent translation have evolved in order to maintain or

activate the translation of essential proteins during periods

of cellular stress when cap-dependent translation

is impaired (reviewed by Van Der Kelen et al. (2009)).

Cap-independent mechanisms depend on the presence of

internal ribosome entry sites (IRES) to enable the initiation

of translation. Although they were originally identified

in viruses, multiple eukaryotic mRNAs, including VEGFs,

have also been reported to contain IRES sequences (Jang

et al. 1988, Pelletier & Sonenberg 1988). The VEGF mRNA

5 0UTR features two IRESs: IRES-A and IRES-B, 293 and

947 nucleotides upstream of the canonical AUG start site

respectively; the position of IRES-B is also slightly more

than 40 nucleotides upstream of an alternative CUG start

codon (Akiri et al. 1998, Huez et al. 1998, Miller et al. 1998).

A single-nucleotide polymorphism (SNP) of the VEGF gene

(K634 COG substitution) has been linked with an

increased risk of PCa (Sfar et al. 2006). This SNP was found

to impair IRES-B function by reducing translation initiated

from the alternative CUG start codon (Lambrechts et al.

2003). Furthermore, a 17-nucleotide sequence within

VEGF IRES-A has been shown to promote the formation

of an intramolecular G-quadruplex structure (Morris et al.

2010). G-quadruplex formation potentially regulates
Published by Bioscientifica Ltd.
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multiple aspects of RNA regulation, in the case of VEGF,

mutations of this 17-nucleotide sequence prevent

G-quadruplex formation and result in the inhibition of

IRES-A function (Morris et al. 2010). The contribution of

G-quadruplex regulation to VEGF expression in PCa

remains to be determined, but given the role of IRESs in

mediating VEGF translation under stress conditions, these

intramolecular structures warrant further investigation.

The translation efficiency of VEGF can be further

modified by microRNAs (miRNAs), a class of small, non-

coding RNA. miRNAs regulate translation by binding to

specific sequences within the target mRNA. Usually these

binding sites reside within the 3 0UTR, but they can also

occur in the 5 0UTR and coding regions (Tay et al. 2008).

Target binding is mediated by the miRNA-associate

RNA-induced silencing complex and results in either the

repression of translation or mRNA degradation, with

the net result of both processes being reduced protein

expression (reviewed by Huntzinger & Izaurralde (2011)).

Analyses of prostate tissue and cell lines have identified

multiple miRNAs, the expressions of which are consistently

being altered in prostate tumors, which has led to further

analysis of downstream gene targets and their potential

contribution to carcinogenesis. Szczyrba et al. (2010, 2013)

reported a significant reduction of miR-29b expression in

PCa and subsequently demonstrated miR-29b as a direct

regulator of VEGF in PCa cell lines LNCaP and DU145.

In addition to miR-29b, the VEGF transcript is

predicted to contain binding sites for multiple miRNA

types (as highlighted in Fig. 2C), such as miR-145 and

miR-205, the expressions of which are reduced in PCa and

have been shown to regulate VEGF in other cancer types

(Szczyrba et al. 2010, Fan et al. 2012, Yue et al. 2012, Boll

et al. 2013). However, it remains to be determined how

effectively these miRNAs repress VEGF translation in PCa.

Indeed, it is also possible that such repression may only

occur in specific cellular contexts. In relation to this point,

an investigation of the anti-angiogenic effects of melato-

nin on hypoxic PCa PC3 cells identified a melatonin-

dependent increase in the expression of miR-374b.

Subsequent studies confirmed that miR-374b mediated

the anti-angiogenic effects of melatonin by inhibiting

VEGF expression (Sohn et al. 2015).
VEGF signaling, bone metastasis, and niches

The dissemination of cancer cells from the primary tumor

site to distant organs is a key step during cancer

progression. Once cancer cells invade into the bone,

liver, and lungs, no curable treatment exists. PCa cells
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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preferentially invade into the bone. It is estimated that

70% of patients with metastatic PCa develop bone

metastasis (Shah et al. 2004, Semenas et al. 2012). These

studies suggest that altered VEGF expression in endo-

thelial cells leads to impaired blood vessel invasion.

Because blood vessels serve as a way of transporting

circulating cancer cells, the increased blood vessel beds

will increase the transporting of cancer cells into the blood

vessel-enriched organs, including the liver and lungs.

The spread of PCa cell metastasis to bone is a complex

process that involves the local infiltration of tumor cells

into adjacent tissue, migration from the primary tumor

site into vessels (intravasation), survival and dissemina-

tion through the vascular system, extravasation, and

finally, invasion and subsequent proliferation into the

bone. There is increasing evidence showing that VEGF

signaling plays an important role in promoting bone

metastasis of PCa. It has been shown that VEGF signaling

initiates metastatic niches to allow cancer cells to home

to the bone marrow during bone metastasis (Kaplan et al.

2005). VEGF may stimulate the proliferation and

migration of the infiltrated immune cells that secondarily

infiltrate tumor tissue to promote PCa cells to enter into

the blood vessels and to disseminate into distant organs.

The expression of VEGF has also been detected in

osteoblasts (Maes et al. 2010).

Previous reported studies have shown that VEGF has

autocrine and paracrine effects on the growth and survival

activity of osteoblasts (Midy & Plouet 1994, Street et al.

2002, Dai et al. 2004). Furthermore, bone morphogenesis

proteins contribute to PCa-mediated osteoblastic activity

in vitro partly through VEGF (Dai et al. 2004). It has also

been shown that VEGF contributes to PCa-induced bone

remodeling at bone metastatic sites in mouse models

(Kitagawa et al. 2005). These studies suggest that the

altered expression of VEGF in both PCa cells and cells of

invaded bone tissue may result in the increased activity of

bone cells, which leads to an imbalance of bone formation

and resorption. VEGF is also functionally linked to

adhesion molecules, such as fibronectin and extracellular

matrix. These proteins may assist tumor cells to attract

and adhere to the bone microenvironment through the

VEGF receptors VEGFR1 and VEGFR2 (Chen et al. 2004,

Sterling et al. 2011).

VEGF, in addition to its angiogenic role, suppresses

the immune system (Fig. 3). It has been shown that VEGF

directly or indirectly exerts multiple immunosuppressive

activities. It has been reported that VEGF secreted by

mouse tumor cells prevented dendritic cells from

maturing, thereby hampering tumor antigen presentation
Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-15-0123


A. Pro-
angiogensis

B. Pro-
metastases

C. Immune
suppression Blood vessels

Lymphatic vessel

PCa cell Hypoxic
PCa cell

Dendritic
cell

Basement
membrane

Anti-tumor
macrophage

Cytotoxic
T-cellVEGFRVEGF

Bone
metastases

Bone
marrow
niche

Figure 3

VEGF influences multiple convergent mechanisms that contribute to

metastases. VEGF promotes angiogenesis in response to intratumoral

hypoxia and deregulated hypoxia inducible factor function (A), promotes

local invasion and distant metastases by facilitating PCa cell colonization of

niches within the bone marrow (B), and suppresses the function of

cytotoxic T, anti-tumor macrophages and dendritic cells, which thereby

enables disseminating tumor cells to evade immune surveillance (C).
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(Gabrilovich et al. 1996). VEGF expression is present in

cytotoxic T cells, and it has been shown that increased

expression of VEGF and VEGFR2 suppressed the activity of

the T-cell receptor CD47 and cytotoxic T cell function (Kaur

et al. 2014). Altered VEGF signaling may also suppress

the function of dendritic cells and indirectly inhibit T-cell

infiltration of tumor tissue. Consistent with this, VEGF

blockade has resulted in increased T-cell homing to tumors

and has enhanced the efficacy of immunotherapy in mouse

models (Mellman et al. 2011; Fig. 4).
Mouse models of PCa and relevant aspects of
angiogenesis/VEGF signaling

The need for a better understanding of the molecular and

pathological events involved in PCa progression has

driven the development of animal models. Animal models

of PCa can be distinguished into two broad groups, the

first being xenograft of human PCa into immune-

compromised mice and the second being genetically

modified mice that will develop prostatic cancer during

their lifetime (Gingrich et al. 1999, Gray et al. 2004).
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Although they are informative, mouse models have

several limitations. These include the inability to encom-

pass the full complexity of the human disease and the

inherent resistance to the development of invasive PCa.

Nevertheless, several mouse models have been developed

for the study of PCa, and these have been comprehen-

sively reviewed elsewhere (Wu et al. 2013, Grabowska et al.

2014, Berman-Booty & Knudsen 2015). In the present

review, we focus on those that more closely recapitulate

the progression of the human disease (Table 1).

Several xenograft animal models have been developed

to recapitulate the progression of human PCa. The PC3

and LNCaP, which are derived from an osteolytic and a

lymph node metastasis respectively, are two of the cell

lines that are most frequently used to study PCa (Kaighn

et al. 1979, Horoszewicz 1980). Several sublines were

derived from these original cell lines with enhanced

tumorigenicity in vivo, including LNCaP-Pro3-5, LNCaP-

LN3-4, PC3M, PC-3M-LN4 (Wu et al. 2013). LNCaP-LN3

and LNCaP-Pro5 xenografts are thought to resemble

prostatic adenocarcinomas, because xenografts express

AR and prostate-specific antigen (PSA) and are shown to
Published by Bioscientifica Ltd.
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Figure 4

Therapies that target the receptor tyrosine (RTK) activity of VEGF receptors.

Results have been disappointing for nintedanib (Molife et al. 2014).

However, dovitinib (Wan, et al. 2014, Porta et al. 2015), cabozantinib (Smith

et al. 2014), pazopanib (Sridhar et al. 2014), and axitinib (Eswaraka et al.

2014) have shown some promising activity in patient subsets in PCa clinical

trials or preclinical models. The structures of the FDA-approved RTK

inhibitors sorafenib and sunitinib are shown for comparison. Trials of

tivozanib are under way (NCT01885949).
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be androgen-sensitive (Pettaway et al. 1996, Yonou et al.

2001). I.v. or orthotopic injections of LNCaP in mice are

able to metastasize to subcutaneously implanted human

adult bone but not to murine bone (Yonou et al. 2001).

Interestingly, one androgen-independent subline, LNCaP

C4-2, is able to metastasize to the bone and cause

osteoblastic lesions (Thalmann et al. 1994). PC3M

xenografts are androgen-insensitive and stain negative
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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for PSA and AR, and the subline PC-3M-LN4 forms bone,

lymphatic, and lung metastases after orthotopic or i.v.

injection into mice (Pettaway et al. 1996, Yonou et al.

2001). Overall, these data suggest that LNCaP xenografts

may model an earlier-stage PCa progression than PC3

xenografts do.

The WISH-PC2 xenograft model was derived from a

poorly differentiated adenocarcinoma that was treated
Published by Bioscientifica Ltd.
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Table 1 Selected mouse models for the study of prostate cancer (PCa) progression

Model PCa type Metastasis CRPC model NE PCa model VEGF studies

Mouse xenografts
LNCaP (Sublines: LNCaP-Pro3-5,
LNCaP-LN3-4, LNCaP-IL6, LNCap-abl,
LNCaP C4-2)

AD, MC V, L NR No Sweeney et al. (2002)

PC3 (Subline: PC3M, PC3-AR,
PC-3M-LN4, PC-3M-luc-C6,
PC-3M-Pro4)

AD, MC V, B, L Yes No Anai et al. (2011) and
Pang et al. (2011a,b)

WISH-PC2 MC, NE V, L Yes Yes NR
LTL352, LTL370 MC, NE Yes, NR Yes Yes NR

Genetically engineered mice
TRAMP AD, NE V, B, L Yes Yes Montico et al. (2014)
LADY (12T-7s-f/PB-hepsin) MC, NE V, B NR Yes NR
LADY (12T-10) MC, NE V, B, L NR Yes NR
P53PEK/K RbPEK/K MC, NE V,L Yes Yes NR
Ptenflox/flox MC V, L Yes No Geretti et al. (2010)
Ptenflox/flox NKX3.1-CreERT2 AD L Yes NR NR
Ptenflox/flox NKX3.1-CreERT2Braf LSLflox/C AD, MC V, L NR NR NR
Ptenflox/flox NKX3.1-CreERT2Kras LSLflox/C AD, MC V, L NR NR NR
Ptenflox/flox, Smad4 flox/flox MC V, L NR NR NR
Z-Myc, Ptenflox/C, p53flox/flox AD, MC L, B NR No NR

AD, adenocarcinoma; MC, metastatic carcinoma; AI, androgen independent; NE, neuroendocrine; CRPC, castrate-resistant prostate cancer (PCa);
SQ, squamous differentiation; V, visceral; B, bone; L, lymph nodes; NR, not reported.
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with androgen deprivation (AD) and was histologically

consistent with a NE PCa upon implantation (Pinthus

et al. 2000). WISH-PC2 orthotopic xenografts are able to

metastasize to the lymph nodes, lungs, and liver, and

when they are injected locally, they can form tumors

within bone and liver tissues (Pinthus et al. 2000). Other

NE PCa-relevant models include the LTL352 and LTL370,

which are derived from metastatic NE PCa resected from

urethral and penile areas respectively. Like WISH-PC2,

these xenografts stain negative for PSA and AR, and they

can grow in androgen-deprived mice with rapid doubling

time. A major limitation of xenograft models is that most

of the tissues are obtained from advanced and aggressive

PCas, and they therefore tend to model later stages of

the disease. Furthermore, one intrinsic limitation of

xenografts is that these systems depend on the effective

murine vascularization of human cancer cell masses, and

they may therefore not fully recapitulate all aspects of

tumors in patients. Nevertheless, the xenograft models,

especially LNCaP xenografts, have been instrumental for

understanding PCa and for many preclinical studies.

Transgenic mouse models can approximate the

different stages of PCa progression, from low-grade to

high-grade prostate intraepithelial neoplasia, adenocarcio-

noma, and metastatic cancer. Early models utilized the

expression of viral oncogenes (such as small and large SV40

tumor antigens under the control of the prostate-specific

probasin (PB) promoter) in the prostate epithelium. The
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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viral oncogene models differ from human PCa, insofar as

they present a rapid progression of the disease and

predominant NE differentiation. However, they have

been recognized as relevant models for PCa, and they are

very useful for the investigation of CRPC that progresses

to NE carcinoma (Berman-Booty & Knudsen 2015). In the

transgenic adenocarcinoma mouse prostate (TRAMP)

model, a rapid progression of PCa with lymph node and

lung metastasis has also observed, and bone metastasis

has only been reported for the FVB mouse background

(Gingrich et al. 1996). The TRAMP mice have also

responded to castration and progressed to hormone

refractory disease associated with NE differentiation and

increased metastasis rate (Gingrich et al. 1997, Kaplan-

Lefko et al. 2003). Similarly, some LADY mouse model lines

(e.g., 12T-7s-f/PB-hepsin and 12T10) have been shown to

drive invasive carcinoma and NE carcinoma with metas-

tasis to the liver, lungs, and bone (Masumori et al. 2001,

Klezovitch et al. 2004). The second-generation mouse

models were based on human PCa genetic alterations and

included a loss of the tumor-suppressor genes Pten, Nkx3.1,

p53, and Rb and amplification of the MYC oncogene.

Interestingly, none of the single-gene deletion models

shows a significant PCa phenotype, but their synergistic

inactivation results in cancer onset. For instance, simul-

taneous inactivation of p53 and Rb results in the formation

of highly metastatic tumors that are resistant to castration

and show NE differentiation (Zhou et al. 2006). The best of
Published by Bioscientifica Ltd.
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these new models incorporate multiple genetic lesions

with Cre-gene targeting. The most-utilized models are

based on the conditional targeted deletion of PTEN, and

they seem to recapitulate the disease progression seen in

humans, including the development of CRPC with the

activation of PI3K/Akt signaling (Wang et al. 2003,

Grabowska et al. 2014).

Even though VEGF is the main angiogenic factor

involved in PCa progression and metastasis, few studies

have examined the role of VEGF in PCa animal models.

Xenografts of PCa and benign prostate primary tissue

exhibit maturation of vascularization at 30 days, when

small vessels of human origin containing red blood cells

become present (Presnell et al. 2001, Gray et al. 2004,

Montecinos et al. 2012). At day 6 post-implantation into

mice, these xenograft tumors exhibit a surge of angiogen-

esis, which is preceded by an up-regulation of VEGF in the

stromal counterpart of the tumor at day 2 (Montecinos

et al. 2012). A further increase in VEGF protein has also

been shown to be modulated through the addition of

human testosterone pellets implanted into castrated mice

as compared to the controls (Montecinos et al. 2012).

These data suggest a role for VEGF in angiogenesis

establishment and PCa progression through androgen

regulation. During AD, a marked reduction in micro-

vascular density was seen after 2 days, and it was followed

by vascular reestablishment from days 7 to 14 (Godoy et al.

2011). The expression of VEGF and VEGFR2 increased in

epithelial cells 2 days post-AD, which suggests a compen-

satory role for these molecules in the survival and

progression of PCa (Godoy et al. 2011). These data suggest

androgen-dependent and androgen-independent mecha-

nisms for VEGF induction. As described earlier in the

present review, most xenograft models use primary PCa

tissue; however, PCa cell lines have been exploited in a

subset of studies. For example, PC3 has been used to

investigate the use of drugs to inhibit VEGF signaling

(Anai et al. 2011, Pang et al. 2011a,b). Similarly, the

LNCaP-LN3 orthotopic xenograft has been used to

evaluate the response of bone metastasis to the anti-

VEGF receptor antibody DC101 (Sweeney et al. 2002).

The TRAMP model has been used to study angiogenic

responses. Pathologically, the TRAMP mice with an FVB

genetic background show highly vascularized tumors with

early onset of angiogenic switch, together with a loss of

E-cadherin expression, which is indicative of epithelial–

mesenchymal transition (Gingrich et al. 1999, Kaplan-

Lefko et al. 2003, Chiaverotti et al. 2008). Based on

histological and immunohistochemical analysis, TRAMP

mice tumors also showed high VEGF and FGF-2
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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expression, with increased microvessel density. Impor-

tantly, these mice recapitulate the stimulation of angio-

genesis that has been observed in the aged mouse prostate,

which is sensitive to treatment with antiangiogenic drugs

(TNP-470 alone or in combination with SU5416) and

finasteride (Montico et al. 2014). The role of VEGF in

advanced PCa has also been studied in Pten-conditional

knockout mice. PCa cells in these mice express the VEGF

receptor NRP2 and activate signaling that leads to the

expression of the Polycomb transcriptional repressor

Bmi-1, which is implicated in the onset of PCa induced

by Pten deletion (Goel et al. 2012). This highlights an

important role of VEGF/NRP2 signaling in PCa and the

need to develop new therapies that specifically target this

pathway (Geretti et al. 2010).
Anti-VEGF signaling therapies in the clinical
management of PCa

High tumor VEGF levels have been associated with poor

treatment outcomes in PCa, and higher VEGF serum levels

have been described in patients with metastatic disease

than in those with localized disease (Duque et al. 1999,

Green et al. 2007). The use of anti-VEGF therapies in

preclinical and clinical studies has been associated with

increased side effects, including hypertension, gastrointes-

tinal bleeding, intestinal perforation, and pulmonary

embolism (Mangoni et al. 2012, Ogita et al. 2012).

Although bevacizumab has shown some promise with

improved progression-free survival, no significant

improvement in overall survival has been achieved even

in combination therapies (reviewed by Small & Oh (2012)

and Armstrong et al. (2013)). A newer anti-angiogenesis

agent derived from the extracellular domains of the

VEGFR (aflibercept) in combination with docetaxel and

prednisone also offered no improvement in overall

survival (Tannock et al. 2013). Yet given the comparative

success of trials of newer agents that target VEGF signaling

in other cancer types (Qi et al. 2011, Grothey et al. 2013),

further studies are required of these agents in the PCa

setting (Fig. 4). Indeed, cediranib, a VEGFR receptor

tyrosine kinase inhibitor, was tested in a phase II trial on

docetaxel pretreated CRPC patients as monotherapy and

was found to be well tolerated, with some anti-tumor

activity (Dahut et al. 2013). There are ongoing phase II

trials using cediranib in combination with docetaxel plus

prednisone or with abiraterone (ClinicalTrials.gov

identifier NCT00527124 and NCT01574937 respectively)

in hormone refractory PCa. A phase I trial that com-

bines abiraterone with cabozantinib is also ongoing
Published by Bioscientifica Ltd.
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(NCT01574937), as are a phase II trial that combines

bevacizumab, lenalidomide, docetaxel, and prednisone

for the treatment of metastatic CRPC (NCT00942578).

Given the immunosuppressive and pro-angiogenic actions

of VEGF, new combination therapies that target VEGF

signaling and promote immune function are likely to

emerge (reviewed by Cheng & Fong (2014)). However,

further studies are required to identify not only the

optimal therapeutic combinations but also the sequencing

of therapies with respect to cytotoxic chemotherapy use.

This is of particular significance, given that the reduced

tumor angiogenesis achieved by anti-VEGF therapies may

impair optimal delivery of chemotherapeutics within

tumor masses (Carmeliet & Jain 2011).
Effect of radiation therapy on angiogenesis

Radiation therapy is an important treatment modality for

the management of malignancies. Preclinical studies have

demonstrated that in addition to inducing cell death,

radiation also damages tumor vasculature and prevents

tumor angiogenesis (El Kaffas et al. 2013). However, local

treatment failures occur in many patients after the initial

response to radiation therapy. Such recurrent diseases

are noted to be more aggressive, to be more resistant to

therapy, and to have poorer prognoses (Punnen et al.

2013). Recurrence has been partly attributed to sub-

sequent improvements in the tumor vasculature being

induced by radiation treatment. It has been reported that

following radiation therapy, pro-angiogenic factors,

including VEGF, are induced in the remaining malignant

and stromal cells in the tumor. Mobilization of pro-

angiogenic CD11b-positive myelomonocytic cells from

the bone marrow to the tumor stroma has also been noted

to improve the revascularization of the tumor bed (Martin

(2013) and references therein). Thus, anti-VEGFs such

as bevacizumab may both sensitize the tumor to radio-

therapy and block post-therapy revascularization (Zhuang

et al. 2014). However, the combination of radiation

therapy with anti-VEGF therapies in PCa has not been

extensively studied clinically. A phase II study reported by

Vuky et al. (2012) examined long-term androgen suppres-

sion with bevacizumab and intensity-modulated radiation

therapy in high-risk PCa with acute and late toxicity as

endpoints. They reported that the addition of bevacizu-

mab did not appear to worsen the effect of radiotherapy

in PCa. A phase I trial that has recently completed

recruitment is also studying the toxicity associated with

the combination of sunitinib with hormone ablation and

radiotherapy in patients with PCa (NCT00631529). More
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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trials with overall survival as the endpoint are needed to

assess the effect of combining anti-VEGFs with radiation

therapy in prostate CRPC.
Conclusion

Tumors must exploit pro-angiogenesis pathways in order

to metastasize. For this reason, targeting VEGF signaling

remains an attractive approach to prevent, delay, or reverse

tumor metastasis. The clinical utility of anti-angiogenesis

therapy for metastatic PCa has been disappointing to date.

Such therapies have almost exclusively targeted circulating

VEGF or the tyrosine kinase activity of VEGF receptors.

However, recent advances in understanding the regulation of

VEGF inprostatecells (Kashyap etal. 2013) raises thepotential

to pharmacologically target the epigenetic complexes

involved in the hormonal regulation of VEGF expression.

Indeed, with the approval of the HDAC inhibitors vorinostat

(SAHA) and romidepsin for the treatment of cutaneous

T-cell lymphoma and with the ongoing trials of epigenetic

targeted therapies for PCa (Campbell & Tummino 2014), the

simultaneous targeting of pro-androgenic, pro-estrogenic,

and pro-angiogenic pathways with small molecular

inhibitors of nuclear receptor coregulators is becoming an

increasingly attractive approach.
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