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Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs)

controls a vast if not every biological process in the cell. It is not surprising that deregulation in

ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and

that these pathways are considered as major targets for therapeutic intervention. In this

review, we summarise recent advances in our understanding of the role of the UBL neural

precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related

processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.
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The neural precursor cell expressed
developmentally downregulated-8 pathway
and its cross-talk with ubiquitin

Neural precursor cell expressed developmentally down-

regulated-8 (NEDD8) is a ubiquitin-like molecule (UBL)

sharing w60% amino acid identity with ubiquitin. NEDD8

is attached to its substrates in a manner similar to that

described for ubiquitination, resulting in the formation

ofan isopeptidebond linking the terminal carboxylgroupof

NEDD8 with the 3-amino group of a lysine residue of

the substrate (Kumar et al. 1993, Kamitani et al. 1997,

Lammer etal. 1998,Liakopoulos etal. 1998,Osaka etal. 1998,

Pozo et al. 1998).

The NEDDylation enzymatic cascade is composed

of the key enzymatic activities named E1, E2, E3 and

deconjugating enzymes. The NEDD8 E1-activating

enzyme (NAE) is a heterodimer of APPBP1 and UBA3

corresponding to the N-terminal and C-terminal of the

single polypeptide of the ubiquitin E1 respectively (Leyser
et al. 1993, Walden et al. 2003a,b). UBE2M (UBC12) and

UBE2F are the E2-conjugating enzymes, where multiple

E3-ligases promote the conjugation of NEDD8 to its targets

(Gong & Yeh 1999, Huang et al. 2009). With the exception

of SMURF1 all identified E3-ligases that promote NEDD8

conjugation belong to the RING family of E3s, including

the cullins-associated RBX1/2, the p53-negative regulator

MDM2, c-CBl and the transcriptional co-activator TFB3

(Skowyra et al. 1999, Kamura et al. 1999a,b, Xirodimas

et al. 2004, Oved et al. 2006, Yang et al. 2007a,b, Rabut et al.

2011, Xie et al. 2014). The DCN1 protein co-operates with

RBX1 to enhance cullin NEDDylation (Kurz et al. 2008,

Scott et al. 2011). While NAE is regarded as the only and

specific E1 enzyme for NEDD8, biochemical studies

provided evidence that the ubiquitin E1 enzyme UBE1

can activate NEDD8 in vitro, however with much lower

efficiency compared with ubiquitin (Whitby et al. 1998,

Hjerpe et al. 2012a). It has been unclear whether this level

of cross-talk between NEDD8 and ubiquitin pathways
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Figure 1

Modes of NEDD8 conjugation. Activation of NEDD8 by NEDD8-activating

enzyme (NAE) defines the canonical NEDDylation pathway under homeo-

static conditions. Proteotoxic stress causes an increase in protein

NEDDylation that depends on the activation of NEDD8 by the ubiquitin

E1 enzyme UBE1. This leads to the formation of poly-NEDD8 and/or hybrid

NEDD8–ubiquitin chains on target proteins.
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operates in vivo. The role of NEDD8 in homeostasis has

been established mainly through regulation of Cullin-

RING-ligases (CRLs; see below). More recent studies have

shown that the NEDD8 pathway responds to cellular stress

including proteasome inhibition, heat shock and oxi-

dative stress (Xirodimas et al. 2008, Kim et al. 2011,

Leidecker et al. 2012, Hjerpe et al. 2012a). Under such

stress conditions, a global increase in protein NEDDyla-

tion is observed, which does not depend onNAE but rather

on the ubiquitin E1 enzyme UBE1. The detection of a

thioester bond between NEDD8 and UBE1 provided

evidence for the activation of NEDD8 by UBE1 in vivo

(Leidecker et al. 2012, Hjerpe et al. 2012a). Proteomic

studies designed to discriminate between NEDDylation

and ubiquitination sites in vivo identified branched

peptides, which strongly indicate the formation of poly-

NEDD8 and mixed NEDD8–ubiquitin chains upon stress

conditions (Xirodimas et al. 2008, Leidecker et al. 2012,

Singh et al. 2012; Fig. 1). A similar increase in protein

NEDDylation was observed in the brains of hibernating

ground squirrels; however, it is not known whether the

increase in NEDDylation is UBE1 dependent (Lee et al.

2012). A well-known phenomenon upon the above

described stress conditions is the depletion of free

ubiquitin, which has been considered as a stress signal

(Finley et al. 1987, Finley & Chau 1991). It appears that

this observed decrease in ubiquitin levels is at least part of

the mechanism for the activation of NEDD8 by UBE1
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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(Leidecker et al. 2012, Hjerpe et al. 2012a). This was also

supported by the observation that the artificial increase in

the levels of NEDD8 by overexpression could lead to

NEDD8 conjugation by the ubiquitin pathway (Hjerpe

et al. 2012b). Critical issues to be resolved are whether the

hybrid NEDD8–ubiquitin chains create a new signal that is

specifically detected by cellular factors, alter the recog-

nition of ubiquitin chains by cellular machineries such as

the proteasome, or indeed upon depletion of ubiquitin,

NEDD8 conjugation acts as a backup mechanism func-

tionally replacing ubiquitin (Singh et al. 2012, 2014).

NEDDylation is a reversible process. The COP9

signalosome is a zinc metalloprotease, which has minimal

affinity for NEDD8 but specifically promotes deNEDDyla-

tion of cullins (Lyapina et al. 2001, Zhou et al. 2001,

Enchev et al. 2012, Birol et al. 2014, Lingaraju et al. 2014).

NEDP1 also called as DEN1 or SENP8 due to its sequence

similarity to Sumo-specific proteases is a NEDD8-specific

protease that can deconjugate NEDD8 from its substrates

and it also catalyses the processing of NEDD8 to expose

the C-terminal di-glycine motif before its activation by the

NAE (Gan-Erdene et al. 2003, Mendoza et al. 2003, Wu

et al. 2003, Shen et al. 2005, Rabut & Peter 2008, Xirodimas

2008). COP9 and NEDP1 are regarded as specific deNED-

Dylating enzymes. UCH-L3 (Yuh1 in Saccharomyces

cerevisiae) is a protease with dual specificity, which can

hydrolyse the C-terminus of ubiquitin and NEDD8, and

knockout of Uch-L3 in mice causes elevation of NEDD8

protein levels (Wada et al. 1998, Linghu et al. 2002, Kwon

et al. 2004). The USP21 deubiquitinating enzyme was also

shown to deconjugate NEDD8 upon overexpression in

human cell lines, but further structural and biochemical

studies have shown a rather specific activity of USP21

towards ubiquitin, so the mechanism behind the effect of

USP21 on NEDDylation in vivo is still unclear (Gong et al.

2000, Ye et al. 2011). The Epstein–Barr-virus-encoded

member of proteases BPLF1 was shown that in addition

to its activity in processing ubiquitin it can also process

NEDD8 and de-conjugate NEDD8 from cullins. The

de-NEDDylating activity of BPLF1 is required for efficient

DNA re-replication to allow synthesis and production of

virus DNA (Gastaldello et al. 2010). Additional reported

proteases with dual activity towards NEDD8 and ubiquitin

include ataxin and the parasite hydrolase PfUCH54

(Artavanis-Tsakonas et al. 2006, Ferro et al. 2007).
Substrates for NEDD8

The family of cullin proteins is the most established target

for NEDD8. In humans, it is composed of seven cullins
Published by Bioscientifica Ltd.
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(Cul1, 2, 3, 4A, 4B, 5 and 7), whereas PARC (CUL9) and

APC2 (component of the anaphase promoting complex

APC) contain a cullin-homology domain (Hochstrasser

1998, Pan et al. 2004, Skaar & Pagano 2009, Schreiber et al.

2011, Watson et al. 2011, Chang et al. 2014). All cullins are

modified with NEDD8, while modification of CUL7 is still

controversial (Pan et al. 2004, Skaar et al. 2007). Cullins are

scaffold proteins of multicomponent complexes named

CRLs that control the stability of a rapidly growing list of

proteins with diverse functions including cell cycle

regulation, signalling, DNA repair, the response to

hypoxia and oxidative stress, centrosome duplication

cycle and cytoskeleton dynamics (Watson et al. 2011,

Zhao & Sun 2013). The role of cullin NEDDylation is to

enhance the activity of the CRLs and subsequent

ubiquitination and degradation of the regulated sub-

strates. CRLs control the stability of a vast variety of

targets with established roles in cell cycle progression

(p21, p27 and cyclin D/E), DNA replication (CDT1), the

oxidative response (NFR2) and the response to hypoxia

(HIF1a) (Freed et al. 1999, Karin & Ben-Neriah 2000,

Kondo & Kaelin 2001, Ohh et al. 2002, Bloom et al. 2003,

Hu et al. 2004, Li & Kong 2009). A study has identified

hundreds of potential CRL targets, where functional

inactivation of cullins was combined with genetic and

proteomic approaches, displaying the diversity of CRLs to

control protein stability (Emanuele et al. 2011).

Different models exist for the role of NEDD8 in the

regulation of CRL function, including cullin dimerisation,

dissociation of cullins from its negative regulator CAND1,

conformational changes that bring the E3-RING ligases

RBX1/2 in close proximity to the substrate protein,

stabilisation of the active CRL state, or control the CRL

binding with other E3-ligases and components of the p97

pathway (Duda et al. 2008, Saha & Deshaies 2008, Merlet

et al. 2009, Deshaies et al. 2010, Duda et al. 2011,

Bandau et al. 2012, den Besten et al. 2012, Kelsall et al.

2013, Pierce et al. 2013, Wu et al. 2013, Zemla et al. 2013).

While cullins represent the major substrates for

NEDD8, additional targets for NEDDylation have been

identified. These include transcription factors and

co-regulators, signalling receptors, components of the

protein synthesis and apoptotic machineries, E3-ligases,

histones (Rabut & Peter 2008, Xirodimas et al. 2008, Wang

et al. 2011, Watson et al. 2011). Many of the non-cullin

NEDD8 targets are also established ubiquitin substrates

and the E3-ligases that promote NEDDylation are also

ubiquitin E3-ligases (Rabut & Peter 2008, Xirodimas 2008).

Recent structural studies have revealed an exquisite

mechanism that ensures the preferential modification of
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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cullins with NEDD8. It relies on the coordinated action of

NEDD8, the RBX1/DCN1 E3-ligases and the substrate itself

to preferentially position the NEDD8-loaded UBC12 for

cullin modification (Scott et al. 2014). The mechanistic

insights revealed in these studies will be important for the

determination and characterisation of the pathway used

for NEDDylation of non-cullin targets (see below) (NAE

or UBE1 NEDD8 activation) and to also understand the

mechanism of NEDD8 conjugation by components of

the ubiquitin pathway under stress conditions.
Development of NEDD8 inhibitors-MLN4924

The success of Bortezomib in the clinic highlighted the

potential of blocking protein degradation as therapeutic

approach. Inhibition of NEDDylation was predicted to

satisfy this criterion as NEDD8 can promote diverse

protein degradation through activation of CRLs. In

addition, expression of NAE, UBC12 and global NEDDyla-

tion are found upregulated in a variety of cancers,

including lung adenocarcinomas and squamous-cell

carcinomas (Chairatvit & Ngamkitidechakul 2007, Salon

et al. 2007, Li et al. 2014a,b, c). Suppression of NED-

Dylation by either knockdown of NAE or expression of

dominant-negative mutants of UBC12 reduced growth

rates in the oral carcinoma cell line HSC4 (Chairatvit &

Ngamkitidechakul 2007). Cullins and CRL components

are found overexpressed in several types of cancers (Lee &

Zhou 2010, Wang et al. 2014). The well-established

examples include the Cul1 F-box adaptor protein FBW7,

which is found mutated in 6% of all cancers, but in some

cases of leukaemias or gastrointestinal cancers the

mutation rate can be up to 30% (Welcker & Clurman

2008). In many cases mutations in FBW7 exist within the

substrate binding region, preventing degradation of key

regulators of cell proliferation, including cyclin E as the

best characterised FBW7’s substrate (Koepp et al. 2001,

Welcker et al. 2003, Tetzlaff et al. 2004). Increase in the

levels of CUL3 and CUL4A was also associated with

tumour progression in breast cancers, but the mechanism

for this upregulation is currently unclear (Haagenson et al.

2012). Increase in mRNA levels of CUL7 was also observed

in non-small cell lung carcinoma. Interestingly, CUL7 was

proposed to block the apoptotic function of p53 and to

cooperate with MYC for anchorage-independent growth,

providing insights for the oncogenic properties of CUL7

(Kim et al. 2007). The gene for the human homologue of

the NEDD8 E3-ligase DCN1, DCUN1D1/RP42/SCCRO, is

localised in chromosome 3, which gets amplified

particularly in squamous cell carcinoma. Overexpression
Published by Bioscientifica Ltd.
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of SCCRO was related with transcriptional activation of

GLI1, a key regulator of the hedgehog pathway. Targeting

the expression of SCCRO or GLI1 in SCCRO overexpres-

sing cells by short hairpin shRNA induces an apoptotic

response, providing a possible functional insight for the

oncogenic properties of SCCRO (Sarkaria et al. 2006).

Collectively, there is a strong correlation between

dysfunction in CRL activity and tumourgenesis.

Through an initial screen of chemical libraries and

additional medicinal chemistry, MLN4924 was developed

as a first in class inhibitor of NAE and the NEDD8 pathway

(Soucy et al. 2009). It is an adenosine sulfamate analogue

and its action of inhibition is based on a substrate-assisted

mechanism (Brownell et al. 2010). NEDD8 and MgATP

bind to NAE where NEDD8 is adenylated, before it reacts

with the catalytic cysteine in UBA3 to form a NEDD8

thioester bond. A second round of NEDD8 adenylation

allows the thioster-linked NEDD8 to be transferred to

UBC12 or UBE2F (Walden et al. 2003a). It is during this

round that MLN4924 competes for MgATP binding on

NAE and is able to attack the thioester-linked NEDD8. The

resultant NEDD8–MLN4924 covalent adduct is unable to

be transferred on the E2s and subsequently blocks NEDD8

conjugation (Brownell et al. 2010). The IC50 of MLN4924

for NAE is single nanomolar compared with micromolar

scale for UBE1 or other E1-activating enzymes (O1.5 mM),

displaying the specificity of MLN4924 towards NAE (Soucy

et al. 2009). MLN4924 was shown to be effective in

reducing growth and inducing apoptosis in a variety of

tumour cell lines and tumour xenografts, suggesting a

broad anti-tumour spectrum for NEDD8 inhibitors (Soucy

et al. 2010). MLN4924 has entered cancer clinical trials and

more details can be found in http://clinicaltrials.gov/ct2/

results?termZMLN4924&SearchZSearch)

Importantly, recent studies have demonstrated that

NAE is the key target of MLN4924 in vivo. In tumour cell

lines and xenografts, treatment-emerging resistance was

observed for MLN4924. Sequencing in the resistant lines

identified heterologous mutations in UBA3 (predomi-

nantly A171T) within the MgATP-binding cleft where

MLN4924 also binds (Milhollen et al. 2012, Toth et al.

2012, Xu et al. 2014). These data strongly suggest that the

observed biological effects in MLN4924-treated cells are

primarily due to NAE inhibition.
Effects of NEDD8 inhibition through CRLs
inactivation

Treatment of several tumour cell lines with MLN4924

produced a rapid (within 5 min) decrease in cullin
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-14-0315 Printed in Great Britain
NEDDylation and increase in several known CRL targets,

indeed validating MLN4924’s action in blocking protein

NEDDylation downstream of NAE (Soucy et al. 2009).

Although many CRL targets are involved in cell cycle

regulation at different phases, the predominant effect of

MLN4924 is an initial S-phase arrest. This is due to

accumulation of CDT1, a replication licensing factor that

is degraded by CUL4Cdt2- or CUL1Skp2-based CRLs to allow

entry into mitosis (Zhong et al. 2003, Higa et al. 2006, Jin

et al. 2006, Sansam et al. 2006, Senga et al. 2006, Kim &

Kipreos 2007). In the absence of CDT1 degradation, the

resulting DNA re-replication in the absence of mitosis

causes the induction of the DNA damage response and

apoptosis (Kim & Kipreos 2007, Soucy et al. 2009). A

different mechanism for MLN4924-induced apoptosis was

proposed in activated B-cell-like diffuse large B-cell

lymphoma (DLBCL). It is due to lack of degradation of

IkBa and subsequent inhibition of NFkB, a pathway, which

DLBCL growth depends on (Milhollen et al. 2010, Swords

et al. 2010, Duncan et al. 2012).

Induction of apoptosis is not the sole mechanism

responsible for the growth suppressive effects of

MLN4924. Treatment of several tumour cell lines with

low doses of MLN4924 (O100 nM) induces irreversible

senescence in a p21-dependent but p53- and Rb-indepen-

dent manner (Jia et al. 2011). In addition, inhibition of

NEDDylation by MLN4924 activates autophagy, a process

of intracellular proteolysis that delivers cytoplasmic

components to lysosomal degradation (Luo et al.

2012a,b, Yang et al. 2012a,b, Zhao et al. 2012, Hurley &

Schulman 2014, Schreiber & Peter 2014). Autophagy can

act both as tumour suppressor and as a survival signal in

established tumours (Yang et al. 2011). The activation of

autophagy by MLN4924 is due to accumulation of Deptor

and HIF1a, substrates of Cul1bTrCP and CUL2VHL ligases

(Zhao et al. 2012). The downstream effect is the inhibition

of the mTORC1 pathway, which supressess autophagy.

The activation of autophagy was observed in multiple

tumour cell lines treated with MLN4924 and importantly,

autophagy induction protected cells against the apoptotic

effects of MLN4924 (Zhao et al. 2012). More recently,

MLN4924 has been shown to inhibit tumour angiogenesis

and tumourgenesis in melanoma or KRASG12D-driven lung

tumours in mice model systems. At least partially, this is

due to accumulation of the cell cycle inhibitor p27 (Tan

et al. 2013) or inhibition of the NFkB and mTOR pathways

respectively (Li et al. 2014a,b,c). Similar anti-tumour

effects of MLN4924 were observed in both in vitro and

in vivo model systems of pancreatic cancer, resulting in

suppression of tumour growth and metastasis (Yao et al.
Published by Bioscientifica Ltd.
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2014). In this system, the anti-tumourgenic effects of

MLN4924 are due to the accumulation of RhoA, a member

of the Rho GTPase family that is involved in the control of

cellular migration (Chen et al. 2009, Leck et al. 2010). The

assessment for the potential clinical effects of MLN4924

has so far been focussed on CRL inhibition and accumu-

lation of CRL targets (Soucy et al. 2010, Swords et al. 2010).

Another emerging concept is that inhibition of cullin

NEDDylation can also induce anti-apoptotic or tumour-

genic responses (see also below) that could modulate the

efficacy of MLN4924 in clinic. For example, MLN4924

causes the stabilisation of proteins such as the NRF2

transcription factor, which controls the induction of

anti-oxidant genes. NRF2 degradation is mediated by a

CUL3Keap1 CRL and is prevented in w30% of lung cancers

either due to mutation in KEAP1 or NRF2 (Itoh et al. 1999,

Cullinan et al. 2004, Lee & Zhou 2010).

Cell growth

(ribosome biogenesis)
Cell cycle arrest

(transcriptional activity
regulation) 

Figure 2

NEDD8 controls protein complex formation. (A) NEDDylation of Von-

Hippel-Lindau (VHL) promotes binding of VHL to fibronectin excluding its

incorporation within a CRL2 complex. (B) Modification of cullins with

NEDD8 stabilises the active Cullin-RING-ligase (CRL) complex containing an

F-box protein bound to its substrate. DeNEDDylation allows the reshuffling

of the complex (dynamic state) through binding of CAND1 that acts as an

exchange factor allowing the incorporation of new F-box proteins and

substrates. (C) Under homeostatic conditions ribosomal proteins (RPL11)

are associated with rRNA for ribosome biogenesis. Upon nucleolar stress,

decrease in RPL11-NEDDylation allows the incorporation of RPL11 in

complexes at transcriptional sites controlling gene expression.
Inhibition of NEDDylation of non-cullin targets

Many of the reported non-cullin NEDD8 targets include

key cell cycle regulators and tumour suppressors. The Von-

Hipple-Lindau (VHL) and p53 tumour suppressors were

identified as the first non-cullin substrates (Stickle et al.

2004, Xirodimas et al. 2004). VHL is a component of a

Cul2-based E3-ligase that controls the stability of HIF1a

upon hypoxic conditions (Ohh 2006). NEDDylation of

VHL promotes its binding to fibronectin and prevents the

incorporation of VHL within a CRL2 complex (Stickle et al.

2004, Russell & Ohh 2008). The interaction of VHL with

fibronectin is important in tumour progression, as all VHL

tumour-derived mutants are deficient in fibronectin

interaction (Russell & Ohh 2008). This predicts that

inhibition of NEDDylation would predispose cells to

increased tumourgenesis through lack of interaction of

VHL with fibronectin. The studies also proposed a role of

NEDD8 as regulatory switch that can selectively control

the VHL incorporation either within a CRL2 complex or to

bind to fibronectin, defining two distinct functional

outcomes (Fig. 2).
NEDD8 and transcriptional activity regulation

p53 and TAp73

An emerging role for NEDDylation of non-cullin targets is

the control of transcriptional activity. Several studies have

implicated the NEDD8 pathway as regulator of the p53

tumour suppressor and its homologue TAp73. Direct

NEDDylation of p53 and TAp73 inhibits their
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-14-0315 Printed in Great Britain
transcriptional activity (Xirodimas et al. 2004, Watson

et al. 2006). The MDM2 E3-ligase, which is a common

negative regulator for p53 and TAp73, promotes NEDDyla-

tion through direct binding to the substrates (Xirodimas

et al. 2004, Watson et al. 2006). FBX011, an F-box protein

and a component of CUL1-CRL preferentially promotes

p53 NEDDylation but not ubiquitination and inhibits p53

transcriptional activity (Abida et al. 2007). The required

lysines for p53 NEDDylation (K370, K372, K373 for MDM2

and K320, K321 for FBX011) are also reported sites

for p53 ubiquitination, suggesting mutual exclusion or

possibly cooperation between NEDD8 and ubiquitin for

controlling p53 function (Xirodimas et al. 2004). Despite

the close sequence similarity between NEDD8 and

ubiquitin, these molecules differentially control p53

localisation. A fusion of C-terminal p53 to NEDD8 causes

a nuclear p53 localisation, whereas a similar fusion with

ubiquitin is found exclusively in the cytoplasm (Brooks &

Gu 2006, Carter et al. 2007). Evidence for a physiological
Published by Bioscientifica Ltd.
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role for such differential role of NEDD8 and ubiquitin

comes from studies on NEDD8 Ultimate Buster 1 (NUB1)

and the TIP60 acetyltransferase. NUB1 was identified as a

NEDD8 interacting protein and contains two UBA domains

(Kamitani et al. 2001, Kito et al. 2001). Expression of

NUB1 decreases p53 NEDDylation and promotes p53

mono-ubiquitination, which creates a nuclear export signal

and cytoplasmic localisation of p53 (Liu & Xirodimas

2010). TIP60 expression causes a preferential decrease in

p53 NEDDylation but not ubiquitination (Dohmesen et al.

2008). The localisation of TAp73 is also controlled by

NEDD8, but in contrast to p53 it promotes its cytoplasmic

localisation (Watson et al. 2006). Whether NEDD8 speci-

fically controls binding of p53 and TAp73 with nuclear or

cytoplasmic anchoring factors is not yet known.

Another level of control of p53 function was revealed

through the identification of ribosomal proteins as

NEDD8 targets (Xirodimas et al. 2008). Ribosomal proteins

have emerged as critical regulators of the p53 pathway.

Under normal growth conditions ribosomal proteins

rapidly enter the nucleolus as part of the ribosome

biogenesis process for the production of the small and

large subunits of the ribosome. However, conditions that

mainly block transcription in the nucleolus, including

nutrient starvation or treatment with low doses of

the chemotherapeutic drug actinomycin D, cause the

so-called nucleolar or ribosomal stress. This is manifested

by the relocalisation of ribosomal proteins from the

nucleolus to the nucleoplasm. Under these conditions,

ribosomal proteins are able to bind and inhibit the activity

of MDM2, which under unstressed conditions targets p53

for degradation (Zhang & Lu 2009, Boulon et al. 2010,

Golomb et al. 2014, Vlatkovic et al. 2014). NEDDylation of

RPL11 and RPS14 was shown to control the above

signalling event (Sundqvist et al. 2009, Zhang et al.

2014). Nucleolar stress conferred by actinomycin D causes

a decrease in RPL11 NEDDylation that allows RPL11

relocalisation from the nucleolus to the nucleoplasm

and p53 activation. TheMDM2 E3-ligase and themyeloma

overexpressed 2 (MYEOV2) proteins were shown as

cellular factors that promote or decrease RPL11-NEDDyla-

tion respectively (Sundqvist et al. 2009, Ebina et al. 2013).

Similarly to RPL11, MDM2 promotes NEDDylation of

RPS14 and it is required for its nucleolar localisation

(Zhang et al. 2014). The human coilin-interacting nuclear

ATPase protein (hCINAP), a protein essential for Cajal

body formation, directly binds to RPS14 and inhibits

RPS14 NEDDylation due to the recruitment of NEDP1

(Zhang et al. 2014). Mechanistically, at least for RPL11, the

observed relocalisation upon stress is accompanied with
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the recruitment of RPL11 to the transcription sites of

p53-regulated genes, facilitating the recruitment of the

p300 transcriptional co-activator and p53 activation

(Mahata et al. 2012).

The models derived from the studies on VHL and

cullin NEDDylation propose that NEDD8 controls the

substrate incorporation within different complexes or

stabilises the active state of a complex respectively (Russell

& Ohh 2008, Pierce et al. 2013). Similarly, NEDDylation

may also control the differential incorporation of riboso-

mal proteins either within the ribosome biogenesis

pathway (unstressed conditions) or within transcription

factor complexes (nucleolar stress conditions) (Fig. 2).

Inhibition of protein NEDDylation may cause the

re-organisation of multicomponent complexes with dis-

tinct functional outcomes (Fig. 2).

Several cullins have also been implicated in negatively

regulating p53 stability and function, either through

direct binding to p53 (CUL7, PARCc) and cytoplasmic

sequestration, through binding to MDM2 (CUL4A/B) or

viral proteins (CUL2, 5) that facilitate p53 degradation

(Querido et al. 2001, Nikolaev et al. 2003, Ali et al. 2004,

Nag et al. 2004, Andrews et al. 2006, Banks et al. 2006, Sato

et al. 2009, Thirunavukarasou et al. 2014).

The key biological outcome of all the above regulatory

processes is the inhibition of p53 function by the NEDD8

pathway. Initial studies suggested that the biological effect

of NEDD8 inhibition by MLN4924 is independent of the

p53 status (Soucy et al. 2009). However, further studies

showed that the p53 pathway could affect the biological

outcome of NEDD8 inhibition in tumour cells (Lin et al.

2010, Blank et al. 2013). Interestingly, knockdown of p53

in MCF7 breast cancer cells facilitated the apoptotic

response to MLN4924 treatment, suggesting that p53

activation may indeed protect cells against the apoptotic

effect induced by NEDD8 inhibition (Lin et al. 2010). It is

therefore important to establish the mechanism for the

cytoprotective effect of p53, as inhibitors of p53 function

could promote the MLN4924-induced apoptotic effect in

tumours containingWT p53, which account for 50% of all

cancer cases (Muller & Vousden 2014).
E2F1

The theme of transcriptional repression by NEDD8 was

further expanded with studies on the NEDDylation of the

transcription factor E2F1. The E2F family of eight

members of transcription factors has an essential role in

cell cycle progression and the G1 to S phase transition. E2F

can also control apoptosis as in response to DNA damage
Published by Bioscientifica Ltd.
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induces expression of proapoptotic genes such as p73,

APAF1, caspases (Biswas & Johnson 2012). NEDDylation

represses the transcriptional activity of E2F1, which is

relieved upon DNA damage and the action of the NEDP1

deNEDDylating enzyme (Loftus et al. 2012, Aoki et al.

2013). This allows the interaction of E2F1 with the

co-activator Microcephalin (MCHP1) that is required for

p73 induction (Aoki et al. 2013). Interestingly, the site of

E2F1 NEDDylation (K185) is also methylated, providing

another example of a possible interplay between NEDDy-

lation and additional post-translational modifications

(Loftus et al. 2012).
NFkB

NEDD8 also controls the function of NFkB by modifying

the regulators of the pathway. The NEDDylation of the

breast cancer-associated protein 3 (BCA3) inhibits NFkB

activity in the nucleus through recruitment of the SIRT1

deacetylase (Gao et al. 2006). More recent studies have

shown that the TRIM40 and BRCA1-associated protein 2

(BRAP2) E3-ligases could impact on the activity of NFkB.

TRIM40, amember of the Tripartite motif (TRIM) family of

RING finger proteins, was found to interact with NEDD8

in a yeast two-hybrid screen (Noguchi et al. 2011). A role

for TRIM40 in controlling NFkB function was then

revealed, as TRIM40 interacts with IKKg, a component of

the IKK complex that activates NFkB. TRIM40 was shown

to promote NEDDylation of IKKg and to repress NFkB

function. K63-linked or linear poly-ubiquitination

activates IKK and NFkB and therefore TRIM40-mediated

NEDDylation of IKKg may oppose this activation signal

(Noguchi et al. 2011). As TRIM40 expression is signi-

ficantly reduced in gastrointestinal carcinomas, it will be

interesting to determine the level of IKKg NEDDylation in

these tumours. BRAP2 was also identified as a NEDD8

interacting protein in a yeast two-hybrid screen and to also

bind CUL1 within the Cul1bTrcp complex that activates

NFkB. Interestingly, BRAP2 is NEDDylated in a lysine that

is within a motif similar to that of cullin NEDDylation

(Takashima et al. 2013). The role of NEDD8 in BRAP2

function is not clear. However, overexpression or

knockdown of BRAP2 leads to inhibition of NFkB nuclear

translocation and activation, suggesting that BRAP2-

NEDDylation or other post-translational modifications

may control BRAP2 complex formation with components

of the NFkB pathway (Takashima et al. 2013). Depending

on cellular conditions NFkB can act as an oncogene or

tumour suppressor (Perkins 2012). Differential regulation

of components and complex formation within the NFkB
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pathway by post-translational modifications such as

NEDDylation could provide the required elements for

such functional switch. As our knowledge on NFkB

function as an oncogene or tumour suppressor is growing,

appropriate cancer model systems will be available to test

the effect of NEDD8 inhibitors on NFkB functional switch

and tumour suppression.
Membrane receptors

An opposing function of NEDD8 in controlling signalling

through transmembrane tyrosine receptors was proposed.

The epidermal-growth-factor-receptor (EGFR) and the

transforming growth factor b type II receptor (TbRII)

initiate signalling events upon binding to their respective

ligands that control a plethora of biological processes

related to cancer, including cell proliferation, fate

determination and apoptosis (Massaguéet al. 2000).

Receptor turnover is controlled by ubiquitination and in

the case of EGFR and TBRII, the c-CBL E3-ligase promotes

ubiquitination and degradation of the receptors (Oved

et al. 2006, Zuo et al. 2013). As a common emerging

function of RING E3-ligases, c-CBl can also promote

NEDDylation of both receptors but with opposing

outcomes. Upon ligand stimulation, c-CBL promotes

EGFR NEDDylation, which further enhances EGFR ubiqui-

tination and clathrin-mediated endocytosis for lysosomal

degradation (Oved et al. 2006). However for TBRII, c-CBL-

mediated NEDDylation at K556 and K567 protects the

receptor from ubiquitination. This is due to the prefer-

ential targeting of the receptor for endocytosis to EEA1-

positive early endosomes rather than to caveolin-positive

compartments, where TBRII is ubiquitinated and degraded

(Zuo et al. 2013). c-CBL mutations have been identified in

leukaemia patients and one such identified mutation

(H398L) severely impaired the activity of c-CBL to

NEDDylate TBRII but also to ubiquitinate EGFR

(Zuo et al. 2013).

The anti-diglycine antibody that enriches for peptides

modified either by ubiquitin, NEDD8 or the Ubl ISG15 has

been used in a recent proteomic approach to identify new

targets for the Fanconi anaemia core complex (FANC)

E3-ligase. The studies confirmed that fanconi anaemia

complementation group D2 protein (FANCD2) is a major

target for the FANC core complex (see also below). In

addition, di-glycine peptides derived from the chemokine

membrane receptor CXCR5 were significantly reduced in

cells deficient for FANCA (one of the FANC partners)

compared with cells corrected for FANCA expression.

Further analysis showed that CXCR5 is NEDDylated but
Published by Bioscientifica Ltd.
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not ubiquitinated on lysine 339. The role of CXCR5

NEDDylation is to promote the membrane localisation of

the receptor and is required for cell motility, a process

controlled by CXCR5 in B-lymphocytes upon its ligand

binding (Renaudin et al. 2014).
Histone modification and DNA damage
response

There is also evidence to support a non-cullin role ofNEDD8

in controlling the DNA damage response and apoptosis.

Modification of histone 4 (H4) and histone H2A with

NEDD8 is involved in the DNA damage response (Ma et al.

2013, Li et al. 2014a,b,c). RNF111 and RNF168 RING

E3-ligases are involved in a complex way to control

NEDDylation of H4 and H2A. DNA damage causes an

increase in H4 NEDDylation mediated by RNF111, and a

decrease in H2A-NEDDylation, which is physiologically

mediated by RNF168. Under these conditions, RNF168

recognises the NEDD8 chains on H4, whereas the decrease

in H2A-NEDDylation allows its ubiquitination. Both events

are required for the subsequent recruitment of g-H2AX and

BRAC1 to sites of DNA damage (Ma et al. 2013, Li et al.

2014a,b,c). This intricate regulationofhistoneNEDDylation

and ubiquitination may represent another example of

cooperation between thesemodifiers to reorganise complex

formation and allow, for example, the redistribution of

E3-ligases such as RNF168 from H2A to H4.

In vivo siRNA screen of individual deubiquitinating

enzymes in the developing eye of Drosophila, expressing

antagonists for the inhibitors of apoptosis (IAPs) identified

three different deNEDDylating enzymes as potential

apoptosis regulators. NEDP1 (DEN1, SENP8) was one of

the identified enzymes and its knockdown suppressed

apoptosis. Further characterisation showed that the

apoptosis executors Drice and caspase 7 are NEDDylated

by the E3-ligases DIAP and XIAP, respectively, inhibiting

their function. NEDP1 can reverse this effect by removing

NEDD8, facilitating the execution of apoptosis (Broemer

et al. 2010). While subsequent studies challenged the

direct NEDDylation of caspase 7, it appears that NEDD8

can suppress apoptosis through cullin-independent

mechanisms using NEDP1 as a regulator of the process

(Broemer et al. 2010, Nagano et al. 2012). The above recent

studies highlight potential new roles for NEDD8 in

controlling cancer-related processes such as the DNA

damage response and induction of apoptosis.

The Hu antigen R (HuR) is an RNA-binding protein

enhancing the stability of multiple mRNAs encoding

proteins with important roles in cell cycle and
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proliferation or tumour cell growth. HuR is found over-

expressed in a wide variety of tumours, and there is a close

correlation between HuR overexpression and tumour-

genesis. NEDDylation of HuR, mediated by the MDM2

E3-ligase, protects HuR stability. Inhibition of NEDDy-

lation either by siRNA knockdown of NEDD8 or UBC12

causes a decrease in HuR levels in colon and human liver

cancer cell lines that overexpress HuR. The effect of

NEDD8 in HuR stability is related with HuR subcellular

localisation as NEDDylation promotes HuR nuclear

localisation and protection from degradation (Embade

et al. 2012). Therefore, similarly to what is observed for

ribosomal proteins, NEDD8, in some cases, can protect

targets from degradation, potentially by competing for

ubiquitination sites or altering the rates of proteasomal

degradation of substrates that can be simultaneously

NEDDylated and ubiquitinated.
E3-ligases

The studies on the NEDDylation of non-cullin substrates

had so far identified RING E3-ligases as the mediators of

NEDD8conjugation (Rabut&Peter 2008,Xirodimas 2008).

Recent evidence has strongly supported that the HECT E3-

ligase Smadubiquitination regulator factor 1 (SMURF1) can

also promote NEDDylation (Xie et al. 2014). In a yeast two-

hybrid screen using SMURF1 as bait, NEDD8was identified

as potential interactor. A strong correlation between the

expression of SMURF1 and components of the NEDD8

machinery in colorectal cancers prompted the authors to

test the interaction of SMURF1 with NEDD8 and UBC12. A

series of biochemical and biological studies revealed that

SMURF1 binds to UBC12 promoting auto-NEDDylation.

Interestingly, the authors identified CYS426 as potential

catalytic residue for auto-NEDDylation distinct from its

ubiquitination catalytic site CYS699. Reminiscent to the

role of NEDD8 in CRL activity regulation, SMURF1

NEDDylation increases its ubiquitin ligase activity towards

substrates and to itself. The phenomenon is conserved in S.

cerevisiae, as the SMURF1 homologue RSP5 is similarly

controlled by NEDDylation. However, RSP5 uses the same

catalytic site CYS777 both for NEDDylation and ubiquiti-

nation. Importantly, the NEDD8 catalytic mutant of

SMURF1 (C426A) has lost the ability to promote tumour

formation in both in vitro and in vivo colorectal xenograft

models. The regulatory role of NEDD8 for SMURF1 activity

may be particularly important for colorectal cancers where

SMURF1 is found to be overexpressed (Xie et al. 2014).

Additional NEDD8 targets with implications in neuro-

degenerative diseases include the amyloid precursor protein
Published by Bioscientifica Ltd.
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(APP) intracellular domain (AICD), the E3-ligase Parkin and

the Pink1 kinase. Processing of the transmembrane protein

APP creates aC-terminalAICD fragment,which translocates

into the nucleus to control transcription by the FE65 and

TIP60 transcriptional co-regulators. NEDDylation of APP

was shown to occur at the AICD fragment and inhibited

its interaction with FE65 and TIP60 (Lee et al. 2008). Parkin

a RING in between RING E3-ligase and the Pink1 kinase

play important roles in mitochondria maintenance and are

found mutated in familial forms of Parkinson’s disease.

Parkin was shown to be NEDDylated, which increased

Parkin ubiquitin E3-ligase activity towards itself and to its

substrates (Choo et al. 2012,Um et al. 2012).NEDDylationof

PINK1 increased the stability of the PINK1 55 kDa fragment,

a processed form of PINK1 that is found in the cytoplasm.

Importantly, NEDDylation of Parkinson’s Disease was

shown in extracts from human brains of PD patients, and

treatment of cells with PD-related neurotoxins decreased

NEDDylation of both Parkin and Pink1 (Choo et al. 2012).

These studies may have implications in understanding

Parkin and Pink1 regulation in neurodegeneration.

However, as a potential function of Parkin as a tumour

suppressor is revealed, these findings could expand Parkin’s

regulatorymechanisms to cancer-related pathways (Picchio

et al. 2004, Fujiwara et al. 2008, Alderton 2010).
Potential strategies for the use of NEDD8
inhibitors in cancer therapy

The promising pre-clinical studies for MLN4924 have

demonstrated the potential of NEDD8 inhibitors as
Table 1 Potential combination approaches for MLN4924

Agent Target Tumour type

Ionising radiation DNA double strand
breaks

Breast, pancreatic, lu
cancer

Cisplatin DNA crosslinker Ovarian cancer

Mitomycin C DNA crosslinker Melanoma
Non-genotoxic

(TRAIL)
Death receptors Head and neck squam

cell carcinoma
Pifithrin p53 inhibitor Tumours with WT p5

Proteasome
inhibitors

26S proteasome ?

PYR-41 UBE1 (ubiquitin
activating enzyme)

?

Autophagy inhibitors Atg7? ?
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chemotherapeutics (Table 1). They also provide the proof

of principle to develop E1 inhibitors for other UBL E1

enzymes, such as SUMO or autophagy system, for which

their role in cancer-related processes is well established.

Common issues for compounds that enter into clinical

trials include the potential development of resistance and

their use as single agents or in combination therapy. The

studies in tissue culture and xenograft model systems have

indeed showed that resistance to MLN4924 is a highly

anticipated outcome (Milhollen et al. 2012, Toth et al.

2012, Xu et al. 2014). These results are critical as not only

demonstrate that the observed anti-tumour effects of

MLN4924 depend primarily on its target, NAE, but also

raise the necessity to develop new compounds that

potentially will overcome resistance. Targeting the

E2-conjugating enzymes or E3-ligases could be an inter-

esting approach. For example, allosteric inhibitors for the

ubiquitin E2-conjugating enzyme Cdc34, which is the

primary ubiquitin E2 for CRLs, have been developed and

similarly to NAE inhibitors they block CRL activity and

cause accumulation of CRL targets (Ceccarelli et al. 2011).

The unique N-terminus of the NEDD8 E2-conjugating

enzyme UBC12, which provides an additional and specific

interaction surface for NAE binding may also represent an

interesting target to specifically block NEDD8 conjugation

(Huang et al. 2004, Scott et al. 2011). Combination of

MLN4924 with radiation or chemotherapeutics may also

be an alternative or additional therapeutic approach.

MLN4924 was shown to sensitise breast, pancreatic and

lung cancer cells to ionising radiation. The combination

dramatically increased the proportion of cells in the
Targets of MLN4924 in

combination therapy References

ng p21 (breast cancer);
wee1, cdt1
(pancreatic,
lung cancers)

Wei et al. (2012), Yang et al.
(2012a,b)

FANCD2 Kee et al. (2012), Jazaeri et al.
(2013)

Re-replication, cdt1? Garcia et al. (2014)
ous FLICE-inhibitory

protein
Zhao et al. (2011)

3 ? Komarov et al. (1999), Lin et al.
(2010), Blank et al. (2013)

? Kim et al. (2011), Leidecker et al.
(2012), Hjerpe et al. (2012a)

? Yang et al. (2007a,b), Leidecker
et al. (2012), Hjerpe et al.
(2012b)

? Zhao et al. (2012)
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G2/M phase, which was associated with the observed

sensitisation. Mechanistically, the effects appear to be due

to the accumulation of CRL substrates cyclin-dependent

kinase inhibitor p21 (breast cancer), or the wee1 kinase

and the replication licensing factor CDT1 (pancreatic,

lung cancers) (Wei et al. 2012, Yang et al. 2012a,b). In other

studies, MLN4924 showed moderate activity in ovarian

cancer cell lines as single therapy, but an additive effect

was observed upon the combination of MLN4924 with

the platinum-containing chemotherapeutic cisplatin.

Importantly, the MLN4924–cisplatin combination was

effective in ovarian cancer cell lines derived from patients

who exhibited poor response to cisplatin alone, providing

a potential new therapeutic approach for these cancers

(Jazaeri et al. 2013). MLN4924 was shown to suppress

cisplatin-induced mono-ubiquitinatination of FANCD2, a

key step in the repair of DNA interstrand cross-linkages

(ICLs) produced by cisplatin (Kee et al. 2012). These

studies provide insights on the mechanism used for the

observed sensitisation of MLN4924-treated cancer cells to

DNA ICLs-inducing agents. Similar exciting results were

obtained from the combination of MLN4924 with

another DNA-alkylating chemotherapeutic, mitomycin C.

In several tumour cell lines and in A375 melanoma

xenografts, a synergy was observed between MLN4924

and mitomycin C, which is dependent on intact DNA

damage and repair pathways, comprising ATR, BRAC1/2

and transcription coupled-nucleotide excision repair

(TC-NER) (Garcia et al. 2014).

Another combination strategy for MLN4924 was

proposed in head and neck squamous cell carcinoma

(HNSCC) model systems. MLN4924 efficiently decreased

the viability of several tested HNSCC cell lines as single

agent, but its combination with the tumour necrosis

factor-related apoptosis inducing signal (TRAIL/Apo2L)

had a synergistic effect on induced apoptosis. At the

molecular level, MLN4924 causes the degradation of the

cellular FLICE-inhibitory protein (c-FLIP), a truncated

form of caspase 8 that acts in a dominant-negative manner

to block caspase 8 activation induced by TRAIL (Zhao et al.

2011). Combination of MLN4924 with non-genotoxic

inducers of apoptosis may prove an attractive therapeutic

approach, as non-genotoxic agents are generally less toxic

to healthy cells compared with DNA damaging agents.

As inhibition of NEDDylation by MLN4924 can also

induce responses that protect cells against treatment-

induced apoptosis, inhibitors of such pathways may

enhance the anti-tumour effects of MLN4924. Using p53

inhibitors such as pifithrin could prevent the observed

cytoprotective effect of p53 activation upon MLN4924
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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treatment (Komarov et al. 1999). Similarly, inhibitors of

the autophagy pathway may also sensitise cells to

MLN4924. Such an approach will be also part of a growing

concept for an extensive cross-talk between ubiquitin and

UBLs that is observed in different cellular conditions. The

NEDD8–ubiquitin cross-talk is at the level of CRL

activation and protein ubiquitination and through acti-

vation of NEDD8 by the ubiquitin E1 enzyme UBE1. The

later may be relevant should MLN4924 is combined with

proteasome inhibitors in the clinic, as proteasome

inhibition increases protein NEDDylation through UBE1

and is insensitive to MLN4924 treatment (Leidecker et al.

2012, Hjerpe et al. 2012a). This also raises the question

whether MLN4924 should be combined with inhibitors of

UBE1 such as PYR-41 or it will prove too toxic? (Yang et al.

2007a,b, Lane 2012).

Our knowledge on the complexity within the ubiqui-

tin and UBL pathways and diversity of the regulated

processes is rapidly growing. Protein NEDDylation is

clearly emerging as an important regulator of several

cancer-associated pathways with either pro- or anti-

tumourgenic potential. A complete understanding of the

spectrum of regulated processes and mechanisms of

control of the NEDD8 pathway will help the potential

use of NEDD8 inhibitors in the clinic as a single agent or

in combination with other therapeutics.
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