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Abstract
The destruction of proteins via the ubiquitin–proteasome system is a multi-step, complex

process involving polyubiquitination of substrate proteins, followed by proteolytic

degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome

promote the accumulation of proteins that are deleterious to cell survival, and represent

promising anti-cancer agents. In multiple myeloma and mantle cell lymphoma, treatment

with the first-generation proteasome inhibitor, bortezomib, or the second-generation

inhibitor, carfilzomib, has demonstrated significant therapeutic benefit in humans. This has

prompted United States Food and Drug Administration (US FDA) approval of these agents

and development of additional second-generation compounds with improved properties.

There is considerable interest in extending the benefits of proteasome inhibitors to the

treatment of solid tumor malignancies. Herein, we review progress that has been made in

the preclinical development and clinical evaluation of different proteasome inhibitors in

solid tumors. In addition, we describe several novel approaches that are currently being

pursued for the treatment of solid tumors, including drug combinatorial strategies

incorporating proteasome inhibitors and the targeting of components of the ubiquitin–

proteasome system that are distinct from the 26S proteasome complex.
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Introduction
The highly regulated degradation of cellular proteins is

critically important for the ability of normal healthy cells

to proliferate and differentiate (Ciechanover 2005).

Similarly, induction of apoptosis in normal cells depends,

in part, on selective protein degradation, leading to a

decrease in the ratio of anti- vs pro-apoptotic proteins in

the cell. The vast majority of protein degradation in the

cell is accomplished via the ubiquitin–proteasome system,

wherein proteins destined for degradation are covalently

tagged with ubiquitin, and then subjected to proteolytic

destruction by the macromolecular proteasome complex.
Cancer cells are commonly characterized by the over-

expression or hyperactivation of proteins that promote

aberrant progression through the cell cycle or suppression

of apoptosis, or by the loss of proteins that are important

for cell cycle checkpoints or the induction of apoptosis.

A prevailing school of thought has suggested that

inhibition of the proteasome may lead to the accumu-

lation of proteins deleterious to the survival of cancer cells,

allowing restoration of cell cycle arrest and/or apoptotic

cell death. Indeed, numerous preclinical studies have

now shown that inhibition of the proteasome results in
ion on Ubiquitination and Cancer. The
h, The University of Sydney, Sydney,

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-14-0005


E
n

d
o

cr
in

e
-R

e
la

te
d

C
a
n

ce
r

Thematic Review D E Johnson Proteasome inhibition in
solid tumors

22 :1 T2
significant anti-cancer effects both in vitro and in vivo

(Chen et al. 2011, Frankland-Searby & Bhaumik 2012).

Bortezomib is a first-in-class reversible inhibitor of the

proteasome that has achieved considerable success in the

treatment of certain hematologic malignancies. Notably,

the United States Food and Drug Administration (US FDA)

has approved the use of bortezomib for multiple myeloma

and mantle cell lymphoma (Kane et al. 2003, 2007,

Richardson et al. 2003, 2005, Bross et al. 2004, Fisher

et al. 2006). However, several factors limit both the short-

and long-term success of bortezomib. Bortezomib exhibits

considerable off-target effects that contribute to a high rate

of peripheral neuropathy in treated patients (Richardson

et al. 2006, Orlowski et al. 2007, Cavaletti & Jakubowiak

2010, Corso et al. 2010). In addition, bortezomib is not

orally bioavailable, and the reversible nature of this agent

requires frequent intravenous delivery to maintain pro-

longed proteasome inhibition. Furthermore, many tumors

exhibit inherent resistance to bortezomib, and most

sensitive tumors eventually develop acquired resistance

(Richardson et al. 2003, 2005, 2006, Lonial et al. 2005,

O’Connor et al. 2005, Orlowski et al. 2007). In an effort to

improve on the success of bortezomib and to overcome

some of the limitations associated with this agent,

considerable effort has been invested in the identification

and development of next generation proteasome

inhibitors, including MLN9708 (Kupperman et al. 2010,

Chauhan et al. 2011), carfilzomib (Demo et al. 2007, Kuhn

et al. 2007), oprozomib (Zhou et al. 2009, Chauhan et al.

2010), marizomib (NPI-0052 or salinosporamide A; Feling

et al. 2003, Chauhan et al. 2005, Macherla et al. 2005), and

delanzomib (CEP-18870; Dorsey et al. 2008, Piva et al.

2008). All of these inhibitors are currently undergoing

clinical evaluation in hematologic and/or solid tumor

malignancies.

Despite the major impact that bortezomib treatment

has had on multiple myeloma and mantle cell lymphoma

therapies, considerably less success has been seen in solid

tumors. There are probably a number of factors that

contribute to this paucity of success, but chief among

them appears to be the inherent resistance of solid tumors

in in vivo settings. It is hoped that second-generation

proteasome inhibitors with different selectivities for

proteasome subunits, enhanced or prolonged potencies,

or reduced side effects will generate more satisfying effects

on solid tumors. Moreover, it appears likely that the

anti-cancer activities of proteasome inhibitors will be

markedly improved through the development of

rational drug combination strategies incorporating

conventional or molecular targeting agents. Lastly, the
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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ubiquitin–proteasome system is highly complex,

involving regulatory and catalytic proteins beyond the

central proteasome core. Efforts to target distinct

components within this system are underway, and may

provide a more efficacious way to convert highly pro-

liferative or apoptosis-resistant solid tumor cells to a more

vulnerable state. This review will focus on the basic steps

and components of the ubiquitin–proteasome system,

key proteins that are regulated by this system, the

development and evaluation of small molecules targeting

different system components, and the potential for

combinatorial strategies against solid tumors.
Protein degradation via the
ubiquitin–proteasome system

Proteins destined for degradation via the ubiquitin–

proteasome system include proteins that are damaged,

improperly folded, or those that are intended to have

short half-lives in the cell (Ciechanover 2005).

Degradation of proteins by the ubiquitin–proteasome

system is accomplished in two major steps: i) polyubiqui-

tination of the protein and ii) proteolytic degradation of

the polyubiquitinated protein by the macromolecular

proteasome complex (Orlowski & Wilk 2000, Ciechanover

2005, Shen et al. 2013). Each of these steps involves a

complex series of protein interactions and biochemical

events (Fig. 1).

Polyubiquitination of substrate proteins first involves

activation of the 76-amino acid ubiquitin polypeptide by

the activating enzyme E1. In humans, one primary E1

enzyme (Ube1) has been identified, although it remains

possible that others may be found. Activation involves

covalent linkage between the carboxyl-terminus of

ubiquitin and a cysteine residue present on E1, forming

a thioester bond. The activated ubiquitin is then

transferred to an E2 ubiquitin-conjugating enzyme form-

ing again a thioester covalent linkage. At least 50 distinct

E2 enzymes have been identified in humans. In a third

step, an E3 ligase enzyme transfers the ubiquitin from E2

to the substrate protein. As E3 proteins act to recognize

and bind substrate proteins, it is not surprising that over

500 E3 enzymes appear to be encoded by the human

genome. The majority of E3 ligases are classified as RING

finger E3s, and act by bringing substrates and E2 enzymes

into close proximity. The RING finger E3s then directly

transfer ubiquitin from E2 to the substrate, without

forming an intermediate covalent bond. A minority of

E3 ligases (roughly 30) are classified as HECT domain E3s,

and act by forming an intermediate thioester linkage with
Published by Bioscientifica Ltd.
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Figure 1

Degradation of proteins via the ubiquitin–proteasome system. The

degradation of a substrate protein via the ubiquitin–proteasome system

involves polyubiquitination of the protein, followed by proteasomal

degradation. Ubiquitination involves the activation of ubiquitin by E1,

intermediate conjugation to an E2 ubiquitin-conjugating enzyme, then

transfer of the ubiquitin to the substrate by an E3 ubiquitin ligase enzyme.

The process is then repeated to achieve polyubiquitination of the substrate

protein. The ubiquitinated substrate protein is then recognized for

degradation by the 26S proteasome complex comprising two 19S

regulatory particles and a 20S catalytic core particle. The caspase-like (C-L),

trypsin-like (T-L), and chymotrypsin-like (CT-L) activities of the 20S particle

are present in the b1, b2, and b5 subunits respectively. Substrate proteins

are degraded to oligopeptides.
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ubiquitin before transfer to the substrate. The E3 enzymes

ligate ubiquitin to lysine residues present on the substrate

protein. Following monoubiquitination of the substrate,

the process must be repeated to form an elongated chain

of ubiquitin residues. Proper recognition of ubiquitinated

substrates by the proteasome complex is thought to

require a minimum of four ubiquitin residues in the

polyubiquitin chain.

Proteins that have been appropriately polyubiquiti-

nated are recognized and degraded by the 26S macro-

molecular proteasome complex (Gallastegui & Groll

2010). The 26S complex consists of a 20S catalytic core

particle that is capped at both ends by 19S regulatory

particles. The 19S regulatory particle can be further

subdivided into lid and base components. Following

recruitment to the proteasome, polyubiquitinated

proteins undergo deubiquitination and unfolding

(Fig. 2). The removal of ubiquitin is accomplished by a

family of deubiquitinase (Dub) enzymes, some of which

are associated with the 19S lid. Ubiquitin polypeptides
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
DOI: 10.1530/ERC-14-0005 Printed in Great Britain
that are removed from substrate proteins can be directly

recycled by the cell. The 19S base component plays a key

role in unfolding of the substrate protein and delivery of

the unfolded, deubiquitinated substrate into the 20S

catalytic core particle. The 20S catalytic core particle

consists of four layers of ring-like structures (Groll et al.

1997). The outer ring layers are composed of seven ‘alpha’

subunits, a1–a7, while the inner ‘beta’ rings are composed

of seven beta subunits, b1–b7. The b1 subunits exhibit

caspase-like (C-L) proteolytic activity, the b2 subunits

exhibit trypsin-like (T-L) activity, and the b5 subunits

exhibit chymotrypsin-like (CT-L) activity. Collectively,

these subunits act to degrade substrate proteins into short

oligopeptides.

In addition to the widely distributed, constitutive

proteasome complex described above, cells in the immune

system express an inducible form of the proteasome called

the immunoproteasome (Basler et al. 2013). The immuno-

proteasome differs in the composition of the beta

subunits and the regulatory particle. Treatment with
Published by Bioscientifica Ltd.
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Figure 2

Substrate protein entry to the 20S catalytic core. Before entry into, and

degradation by, the 20S catalytic core, polyubiquitinated proteins undergo

deubiquitination by the members of the deubiquitinase (Dub) enzyme

family. The released ubiquitin moieties are recycled by the cell.

The substrate protein also undergoes denaturation/unfolding. Entry of the

substrate protein into the 20S catalytic core particle is regulated by the base

component of the 19S regulatory particle.
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interferon g or tumor necrosis factor a induces the

expression of unique b1i (LMP2), b2i (MECL-1/LMP10),

and b5i (LMP7) subunits that replace the b1, b2, and b5

subunits of the constitutive proteasome. In addition, a

unique 11S regulatory particle is induced, which replaces

the 19S regulatory particle and caps the immunoprotea-

some complex. With elevated T-L and CT-L, and reduced

C-L, activities, the immunoproteasome plays a key role

in the generation of antigenic peptides that are used to

generate MHC class I-mediated immune responses.
Key proteins regulated by the
ubiquitin–proteasome system

p53

The tumor suppressor protein p53 acts as a transcription

activator and plays key roles in the promotion of cell cycle

arrest, as well as induction of apoptosis. Cellular levels of

p53 are tightly regulated by the ubiquitin–proteasome

system. HDM2, a RING finger E3 ligase, in complex with

p300/CBP acts to promote polyubiquitination and rapid

proteasomal degradation of the p53 protein. In view of the
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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capacity of p53 to promote either cell cycle arrest or

apoptosis, inhibition of the interaction between p53 and

HDM2, or inhibition of proteasome activity, as a means of

elevating p53 levels in cancer cells has been intensively

investigated (Brown et al. 2009). Of course, such a strategy

requires that the cancer cells retain the capacity to express

WT p53. However, the TP53 gene is among the most

commonly mutated or deleted gene in human cancers,

limiting the applicability of this approach.

A unique situation, and opportunity, exists in cancers

characterized by infection with human papilloma virus

(HPV). Nearly, all cases of cervical carcinoma and an

increasing number of head and neck cancers harbor HPV

(Shiboski et al. 2005, Chaturvedi et al. 2008, 2011, Nasman

et al. 2009). In HPV-associated cancer, the viral E6 protein,

in concert with the E6-associated protein, acts as a HECT

domain E3 ligase, promoting the ubiquitination and

proteasomal degradation of p53 (Scheffner et al. 1993).

As p53 is efficiently removed via an HPV E6-mediated

process, HPV-positive cancer cells have little selective

pressure to mutate or delete the TP53 gene. Accordingly,

nearly all cases of HPV-positive cervical carcinoma and

head and neck cancer retain the ability to produce WT p53
Published by Bioscientifica Ltd.
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(Balz et al. 2003, Poeta et al. 2007, Westra et al. 2008). This

suggests that treatment with E6 or proteasome inhibitors

may be particularly useful for restoring the expression of

WT p53 in HPV-positive solid tumors.
p27

The cyclin-dependent kinase (CDK) inhibitor p27 plays a

key role in regulating the entry of quiescent cells into the

cell cycle. Inhibition of the cell cycle by transforming

growth factor b or cell–cell contact is mediated, in part, by

p27, and proteasomal degradation of p27 allows resump-

tion of cell cycle progression. Ubiquitination of p27 occurs

via a complex series of biochemical events, ultimately

involving the RING finger E3 ligase complex SCFSkp2 (Shen

et al. 2013). Interestingly, activation of the E3 ligase

activity of the SCFSkp2 complex requires the attachment

of NEDD8, a polypeptide similar to ubiquitin, to a

component of the protein complex (Merlet et al. 2009).

As discussed later, this has spurred the development of

neddylation inhibitors as a means of restoring p27

expression and cell cycle arrest in cancer cells.
Cyclins

Cyclins associate with CDKs to promote CDK activation

and drive progression through the cell cycle. More than

15 different cyclins have been identified in humans,

each acting at a particular phase of the cell cycle. Cyclins

were named due to the fact that their expression levels

vary, or cycle, dramatically throughout the cell cycle.

Cyclin levels are tightly regulated by both transcriptional

induction and proteasomal degradation. Inhibition of

the proteasome, resulting in aberrant expression of cyclins

throughout the cell cycle, has the potential to promote

inappropriate CDK activation and cell cycle progression.

In cancer cells, this may have a therapeutic benefit by

activating safeguard apoptosis or mitotic catastrophe cell

death mechanisms.
NOXA, BAX, and BIK

Multiple investigations have shown that inhibition of

the proteasome leads to upregulation of pro-apoptotic

members of the BCL2 protein family, including NOXA,

BAX, and BIK (Qin et al. 2005, Zhu et al. 2005a,b, Fribley

et al. 2006, Perez-Galan et al. 2007, Voortman et al. 2007a,

Li et al. 2008). Moreover, the use of antisense oligonucleo-

tides, siRNAs, or shRNAs, has shown that these family

members are partially responsible for mediating cell death
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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induction by proteasome inhibitors in cell line models

representing melanoma (Qin et al. 2005), head and neck

cancers (Fribley et al. 2006, Li et al. 2008), and colon cancer

(Zhu et al. 2005a). NOXA and BAX are known to be induced

by p53 (Miyashita & Reed 1995, Oda et al. 2000), and their

upregulation in response to proteasome inhibition may

result from the elevation of p53 levels, although p53-

independent mechanisms of NOXA and BAX upregulation

have also been described (Qin et al. 2005). The mechanisms

responsible for the potent upregulation of BIK that has

been reported in proteasome inhibitor-treated solid tumor

cell lines are less well understood.
MCL1

In addition to causing upregulation of pro-apoptotic BCL2

family members, proteasome inhibitors have also been

shown to dramatically increase the levels of MCL1, an

anti-apoptotic BCL2 family member (Opferman 2006,

Li et al. 2008, Zang et al. 2012a). Biochemical studies

have shown that MCL1 is a direct proteasome substrate

(Opferman 2006). Since MCL1 acts to inhibit apoptosis,

co-treatment with a proteasome inhibitor and an inhibitor

of MCL1 expression or function is likely to enhance the

cell death-inducing activity of the proteasome inhibitor.

Indeed, use of the MCL1 inhibitor, obatoclax (GX15-070)

or shRNAs directed against MCL1 mRNA, has been shown

to markedly improve the potencies of proteasome

inhibitors against cancer cells of hematologic or solid

tumor origin (Perez-Galan et al. 2007, 2008, Li et al. 2008,

Zang et al. 2012a).
TRAIL receptors

The plasma membrane receptors, DR4 and DR5, bind and

mediate the induction of the extrinsic apoptotic pathway

by the death ligand TRAIL. Treatment of cells with

proteasome inhibitors has been shown to upregulate the

expression of DR4 and DR5, enhancing sensitivity to TRAIL

(Nikrad et al. 2005, Liu et al. 2007, Voortman et al. 2007b,

Shanker et al. 2008, Seki et al. 2010, Yoshiba et al. 2011).

Although the mechanism of DR4 and DR5 upregulation is

incompletely understood, preclinical studies suggest the

potential therapeutic benefit of co-treatment with TRAIL

and proteasome inhibitors in solid tumors.
NF-kB

The NF-kB transcription factor induces the expression of a

wide variety of genes important for cellular proliferation
Published by Bioscientifica Ltd.
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and survival, as well as inflammation and angiogenesis

(Ghosh & Karin 2002). Normally, NF-kB is maintained in

an inactive state through sequestration in the cytoplasm

by the endogenous inhibitor IkB (Ghosh & Baltimore

1990). The activation of NF-kB by external stimuli involves

phosphorylation of IkB, leading to IkB ubiquitination and

proteasomal degradation (Traenckner et al. 1995). The

liberated NF-kB migrates to the nucleus and therein

promotes gene transcription. NF-kB is also well known to

be constitutively overexpressed and/or hyperactivated in a

wide variety of hematologic and solid tumor malignancies

(Aggarwal 2004, Van Waes 2007). Treatment with

proteasome inhibitors is a well-established approach for

suppressing IkB degradation and, thereby, inhibiting the

cancer-promoting activity of constitutively activated

NF-kB (Traenckner et al. 1994).
Inhibitors of the proteasome 20S
catalytic subunit

Bortezomib

Bortezomib (Millenium-Takeda Oncology) is the first

proteasome inhibitor to be approved by the US FDA for

the treatment of cancer (Kane et al. 2003, 2007, Richardson

et al. 2003, 2005, Bross et al. 2004, Fisher et al. 2006).

Bortezomib is a dipeptidyl boronate compound that binds

to the b5 subunit in a reversible fashion, inhibiting the

CT-L activity of the 20S catalytic core particle (Chen et al.

2011). However, bortezomib is not entirely specific, with

modest inhibitory activity against the b1 subunit, as well as

inhibitory activities against a variety of serine proteases,

including cathepsins A and G, chymase, dipeptidyl

peptidase II, and HtrA2/Omi (Arastu-Kapur et al.). It has

been proposed that these nonspecific activities contribute

to the high rate of peripheral neuropathy that has been

observed in bortezomib-treated patients (Arastu-Kapur

et al.). Owing to the reversible nature of bortezomib,

prolonged inhibition of the proteasome in vivo may require

relatively frequent administration, although this is some-

what mitigated by the slow rate of bortezomib dissociation

from the b5 subunit.
MLN9708

MLN9708 (Millennium-Takeda Oncology) is an orally

bioavailable analog of bortezomib currently undergoing

Phase I/II clinical evaluation in hematologic and solid

tumor malignancies (Kupperman et al. 2010, Chauhan

et al. 2011, Driscoll & Woodle 2012). Like bortezomib,
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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MLN9708 is a peptide boronate compound. Following oral

administration, the MLN9708 prodrug is metabolized to

the active agent MLN2238, which acts as a reversible

inhibitor of the b5 subunit.
Delanzomib

Delanzomib (Cephalon), also called CEP-18770, is an

orally bioavailable peptide boronate that inhibits the b5

subunit (Dorsey et al. 2008, Piva et al. 2008). Preclinical

studies have indicated that delanzomib and bortezomib

exhibit similar activities against hematologic and solid

tumors. However, delanzomib may demonstrate reduced

adverse toxicities (Piva et al. 2008). Specifically, in

comparison with bortezomib, delanzomib has shown

significantly reduced cytotoxicity toward bone marrow

stromal cells, bone marrow progenitor cells, and normal

human intestinal epithelial cells. Currently, delanzomib

is undergoing clinical evaluation in Phase I/II trials

(clinicaltrials.gov).
Carfilzomib

Carfilzomib (previously called PR-171; ONYX Pharma-

ceuticals, Inc., South San Francisco, CA, USA) is a

tetrapeptide epoxy-ketone that displays a high degree of

selectivity for the b5 subunit (Demo et al. 2007, Kuhn et al.

2007, O’Connor et al. 2009). The nonspecific activity of

carfilzomib against other b subunits and cellular serine

proteases appears to be minimal (Arastu-Kapur et al. 2011),

which may account for the substantially reduced rates of

peripheral neuropathy that have been observed in

carfilzomib-treated patients (Siegel et al. 2013). The

epoxy-ketone moiety of carfilzomib forms an irreversible

linkage with the b5 subunit allowing prolonged inhibition

of the CT-L activity of the proteasome. However, whether

irreversible, vs reversible, proteasome inhibition provides

a clear clinical benefit remains unresolved. Carfilzomib is

not orally bioavailable and requires intravenous delivery.

Recently, carfilzomib was approved by the US FDA for

treatment of multiple myeloma patients who have

previously been treated with bortezomib (Herndon et al.

2013). Clinical testing of carfilzomib has been advanced

considerably and it is currently being evaluated in a range

of clinical trials in both hematologic and solid tumor

malignancies (clinicaltrials.gov). Solid tumors currently

being evaluated in clinical trials of carfilzomib include

small-cell lung cancer, non-small cell lung cancer

(NSCLC), refractory renal cell cancer, and metastatic

prostate cancer.
Published by Bioscientifica Ltd.
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Oprozomib

Oprozomib (previously called PR-047 and ONX-0912;

ONYX Pharmaceuticals, Inc.) is an orally bioavailable

analog of carfilzomib (Zhou et al. 2009, Chauhan et al.

2010). Like carfilzomib, oprozomib is an irreversible

epoxy-ketone inhibitor with a high degree of specificity

for the b5 subunit. Early stage clinical testing of

oprozomib in hematologic malignancies, primarily

multiple myeloma, is ongoing. In addition, a Phase I

trial of oprozomib in advanced stage solid tumors is also

underway (clinicaltrials.gov).
Marizomib

Marizomib (Nereus Pharmaceuticals, San Diego, CA, USA),

also called NPI-0052 or salinosporamide A, is a naturally

occurring b-lactone compound that irreversibly inhibits

the proteasome (Feling et al. 2003, Chauhan et al. 2005,

Macherla et al. 2005). In contrast to the inhibitors

described earlier, which primarily inhibit the b5 subunit,

marizomib inhibits b1, b2, and b5. It is interesting that

acquired resistance to bortezomib and carfilzomib in

in vitro models frequently corresponds with overexpres-

sion or mutation of the b5 subunit (Kale & Moore 2012,

Verbrugge et al. 2012), although this has not been

observed in patients. Nonetheless, it has been proposed

that the ability of marizomib to inhibit multiple protea-

some activities (b1, b2, and b5) may limit the development

of acquired resistance in marizomib-treated patients.

Marizomib is currently undergoing Phase I clinical testing

in relapsed/refractory multiple myeloma, refractory

lymphoma, and advanced solid tumor malignancies. In

addition, marizomib in combination with vorinostat is

being evaluated in a trial incorporating NSCLC, pancreatic

cancer, melanoma, and lymphoma (clinicaltrials.gov).
Proteasome inhibitors as monotherapy in
the treatment of solid tumors

Bortezomib is by far the most extensively evaluated

proteasome inhibitor in clinical trials. A wealth of

preclinical studies have shown that bortezomib exhibits

anti-tumor activity against both hematologic and solid

tumor malignancies (Chen & Dou 2010). Among solid

tumors, preclinical activity has been observed in the

models of NSCLC (Liu et al. 2007, Voortman et al.

2007a), head and neck squamous cell carcinoma

(HNSCC) (Sunwoo et al. 2001, Fribley et al. 2004, 2006,

Li et al. 2008), hepatocellular carcinoma (Chen et al. 2009),
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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melanoma (Qin et al. 2005), prostate cancer (Williams

et al. 2003, Nikrad et al. 2005), colon cancer (Zhu et al.

2005a,b), renal cell carcinoma (Bonner et al. 2010), and

pancreatic cancer (Nawrocki et al. 2002). By contrast,

clinical trials of bortezomib treatment (particularly as

monotherapy) in solid tumors have generally produced

less promising results. As discussed later, several emerging

strategies offer hope for improving the efficacy of

proteasome inhibitors in the clinic.

Clinical testing of bortezomib in solid tumors has

been most extensive in aerodigestive tract tumors,

particularly NSCLC and HNSCC. Notably, Phase II studies

of bortezomib monotherapy by Li et al. (2010) and Besse

et al. (2012) have failed to demonstrate clinical activity

in patients with advanced stage NSCLC. It is possible,

however, that specific subtypes of NSCLC may be more

responsive to proteasome inhibitors. In a Phase II study,

Ramalingam et al. (2011) observed modest clinical activity

of bortezomib in patients with bronchioloalveolar carci-

noma, a NSCLC subtype. In HNSCC, early phase clinical

trials by Allen et al. (2008) and Gilbert et al. (2013)

demonstrated pharmacodynamic effects (e.g. NF-kB inhi-

bition) of bortezomib monotherapy, but improvement in

clinical outcomes was not observed.

More limited clinical testing of bortezomib mono-

therapy has been performed in a variety of other solid

tumor malignancies. These studies have demonstrated a

lack of clinical benefit for monotherapeutic bortezomib in

recurrent ovarian cancer (Aghajanian et al. 2009), unre-

sectable hepatocellular carcinoma (Kim et al. 2012), and

metastatic colorectal (Mackay et al. 2005), gastric (Shah

et al. 2011), melanoma (Markovic et al. 2005), and prostate

(Morris et al. 2007) cancers. Interestingly, in preclinical

studies of triple-negative breast cancer, cell lines repre-

senting the basal-like subtype were found to be more

sensitive to proteasome inhibitors than cell lines repre-

senting luminal and mesenchymal subtypes (Petrocca

et al. 2013). This suggests that rigorous stratification of

patients according to specific cancer subtypes may be

necessary to reveal the therapeutic benefits of proteasome

inhibitors in solid tumors.

Although the results of solid tumor clinical trials

incorporating bortezomib monotherapy have been some-

what disappointing, several approaches are currently

being pursued that may have a major positive impact

on further application of proteasome inhibitors. First,

as described earlier, a wave of second-generation

proteasome inhibitors is currently being developed. As

a first-generation inhibitor, the therapeutic efficacy of

bortezomib is hindered by several factors, including
Published by Bioscientifica Ltd.
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nonspecificity and associated adverse toxicities, inherent

and acquired resistance, and short-term reversible inhi-

bition. Each of these factors is being addressed in second-

generation proteasome inhibitors. For example, it is

notable that reduced toxicities are seen with carfilzomib,

oprozomib, and delanzomib, which may allow more

frequent dosing and more potency in vivo. Moreover,

agents like carfilzomib and oprozomib are effective in

bortezomib-resistance multiple myeloma cell lines and

primary multiple myeloma cells from patients refractory

to bortezomib treatment (Kuhn et al. 2007, Chauhan et al.

2010). Second, mechanistic studies have determined that

proteasome inhibitors also upregulate the expression of

certain proteins (e.g. MCL1) that act to attenuate the

killing activity of the agent. Co-targeting with inhibitors

of these upregulated anti-apoptotic proteins, or other

constitutively expressed pro-survival proteins, is likely to

markedly increase the therapeutic efficacies of proteasome

inhibitors. Third, as discussed later, molecular targeting of

other protein components of the ubiquitin–proteasome

system, either alone or in combination with inhibitors of

the catalytic core, may be able to circumvent some of the

inherent resistance mechanisms of solid tumors.
Combinatorial strategies incorporating
proteasome inhibitors

Proteasome inhibitors in combination with conventional

chemotherapy or radiation

Results from early-stage clinical testing indicate that

bortezomib (and possibly next generation proteasome

inhibitors) is unlikely to be effective as a monotherapy

against solid tumors in humans. However, co-targeting

strategies incorporating proteasome inhibitors with other

selective or nonselective agents offer a promising oppor-

tunity for improving anti-tumor efficacies (Fig. 3). Numer-

ous preclinical studies have demonstrated synergism

between proteasome inhibitors and conventional chemo-

therapy drugs in both hematologic and solid tumor

malignancies (Yang et al. 2009). Although combination

of bortezomib with conventional chemotherapy in solid

tumor clinical trials has yet to realize highly beneficial

results, it should be noted that clinical trials in multiple

myeloma have shown improvements in efficacy when

bortezomib is combined with thalidomide, melphalan,

dexamethasone, cyclophosphamide, arsenic trioxide, or

doxorubicin (Berenson et al. 2007, Orlowski et al. 2007,

Reece et al. 2008, Terpos et al. 2008, Popat et al. 2009, Chen

et al. 2011). The evaluation of further drug combinations
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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and administration schedules may be necessary to

optimize potential synergy in solid tumors.

In NSCLC, Davies et al. (2009) have reported a notable

survival benefit for bortezomib plus gemcitabine/

carboplatin in a Phase II trial of advanced disease, while

a Phase II trial by Lara et al. (2011) demonstrated enhanced

survival by sequential administration of docetaxel and

bortezomib. In addition, clinical activity of bortezomib in

combination with carboplatin/bevacizumab as first-line

therapy was observed by Piperdi et al. (2012) in a Phase I/II

trial of advanced NSCLC. However, Hoang et al. (2013)

found only minimal anti-NSCLC activity when bortezo-

mib was combined with vorinostat as a third-line therapy

in a Phase II setting.

Bortezomib evaluation in HNSCC has incorporated

patients with advanced stage, recurrent, and metastatic

disease, and has focused on combination with radiation,

conventional chemotherapy, or cetuximab. Pharmaco-

dynamic modulation of NF-kB activity has been detected

in patients receiving bortezomib in combination with

radiation (Van Waes et al. 2005, Pugh et al. 2010).

Moreover, Kubicek et al. (2012) have shown that the

combination of bortezomib plus concurrent chemo-

radiotherapy (cisplatin) is well tolerated in previously

treated and radiation-naı̈ve patients. Phase II studies have

shown that the addition of bortezomib to irinotecan or

docetaxel provides only minimal therapeutic benefit

(Chung et al. 2010, Gilbert et al. 2013). The addition of

bortezomib to cetuximab-containing regimens has been

evaluated in two Phase I trials. Dudek et al. (2009)

combined bortezomib with cetuximab in a cohort of

patients with solid tumors expressing epidermal growth

factor receptors and found that the combination was

modestly effective in promoting stable disease in both

HNSCC and NSCLC. By contrast, Argiris et al. (2011)

terminated a trial of bortezomib plus cetuximab and

radiation when five of six patients underwent progression

earlier than expected. Rather unexpectedly, these early-

progressing patients were suspected to be HPV positive.

Thus, the hoped-for utility of proteasome inhibitors in the

treatment of HPV-positive cancers remains uncertain.

In Phase II studies of metastatic breast cancer,

bortezomib in combination with pegylated liposomal

doxorubicin or anti-hormone therapy failed to yield any

objective clinical responses (Irvin et al. 2010). The

additions of bortezomib to pegylated liposomal doxor-

ubicin in platinum-resistant ovarian cancer and bortezo-

mib to irinotecan in relapsed/refractory colorectal cancer

have also failed to demonstrate any clinical benefit

(Kozuch et al. 2008, Parma et al. 2012). Similarly, in a
Published by Bioscientifica Ltd.
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Phase II trial of metastatic prostate cancer, bortezomib in

combination with prednisone did not exhibit significant

anti-tumor effects (Morris et al. 2007). However, Kraft et al.

(2011) have shown that bortezomib in combination with

hormone deprivation therapy exerts a pharmacodynamic

effect by changing the slope of prostate-specific antigen

upregulation.
Co-targeting the proteasome and cell surface

death receptors

Another opportunity for enhancing the anti-tumor efficacy

of proteasome inhibitors may come from co-targeting DR4

and DR5, the cell surface receptors for the death ligand

TRAIL (Fig. 3). Treatment of solid tumor cells with

proteasome inhibitors has been shown to upregulate DR4

and DR5, enhancing cellular sensitivity to TRAIL (Nikrad

et al. 2005, Liu et al. 2007, Voortman et al. 2007b, Shanker

et al. 2008, Seki et al. 2010, Yoshiba et al. 2011). Targeting

of DR4 and DR5 can be achieved through the use of

recombinant TRAIL or agonistic antibodies to the receptors.
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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Co-targeting the proteasome and MCL1

In addition to inducing the expression of pro-apoptotic

proteins that act to mediate cell killing, proteasome

inhibitors also induce the expression or activation of

proteins that promote cellular survival or proliferation

(Fig. 3). Anti-apoptotic MCL1 is markedly upregulated in

solid tumor cell lines treated with bortezomib, carfilzo-

mib, or oprozomib (Opferman 2006, Li et al. 2008, Zang

et al. 2012a). Suppression of MCL1 expression using

siRNAs/shRNAs or inhibition of MCL1 function using

obatoclax can result in synergistic induction of cell death

(Perez-Galan et al. 2007, 2008, Li et al. 2008, Zang et al.

2012a). Thus, the combination of bortezomib with a

highly selective MCL1 inhibitor represents a promising

therapeutic approach.
Co-targeting the proteasome and STAT3

Bortezomib treatment has also been shown to induce the

activation of STAT3 in HNSCC cells, and the inhibition of
Published by Bioscientifica Ltd.
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STAT3 using a STAT3 decoy oligonucleotide or the

naturally occuring compound guggulsterone results in

enhanced cell killing following proteasome inhibition

(Li et al. 2009). Clinical evaluation of proteasome

inhibitors in combination with a STAT3 inhibitor

awaits the development of a suitable clinical agent to

inhibit STAT3.
Co-targeting the proteasome and autophagy

Proteasome inhibition also promotes the induction of

autophagy in a variety of solid tumor cell lines (Ding et al.

2007, 2009, Zhu et al. 2009, Belloni et al. 2010, Li &

Johnson 2012). In most cases, the induced autophagy

has been shown to temporarily enhance the survival of

cells treated with proteasome inhibitors. Inhibition of

autophagy using chloroquine can increase the sensitivity

of solid tumor cells to bortezomib, carfilzomib, and

oprozomib (Fig. 3; Hui et al. 2012, Zang et al. 2012b).

Co-targeting of pro-survival autophagy and the protea-

some in clinical trials of solid tumors seems warranted.
Co-targeting the proteasome and

epigenetic-modifying enzymes

Finally, co-targeting with proteasome inhibitors and

histone deacetylase (HDAC) inhibitors is currently being

intensively investigated (Fig. 3). Yu et al. (2003) and Pei

et al. (2004) were among the first to report potent synergy

between proteasome and HDAC inhibitors in preclinical

models of leukemia and multiple myeloma, respectively.

Subsequently, preclinical synergy of these agents has been

reported in a broad range of solid tumor cells, including

cell line models representing ovarian (Bazzaro et al.

2008, Fang et al. 2011, Gatti et al. 2012), glioblastoma

(Asklund et al. 2012), colon (Pitts et al. 2009), pancreatic

(Bai et al. 2006, Spratlin et al. 2011), hepatocellular

(Spratlin et al. 2011), HNSCC (Kim et al. 2010), and uterine

(Lin et al. 2009) cancers. These studies have not been

limited to the proteasome inhibitor bortezomib, as

synergy of HDAC inhibitors with carfilzomib and

marizomib has also been reported (Miller et al. 2007,

Dasmahapatra et al. 2010, 2011). Clinical evaluation of

combined treatment with proteasome inhibitors and

HDAC inhibitors has been pursued most extensively in

multiple myeloma (Hideshima et al. 2011). The VANTAGE

088 Phase III trial of multiple myeloma patients reported

modestly prolonged progression-free survival (PFS) with

vorinostat plus bortezomib (median PFSZ7.63 months) vs

placebo plus bortezomib (median PFSZ6.83 months)
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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(Dimopoulos et al. 2013). The PANORAMA 2 Phase II

trial of panobinostat plus bortezomib demonstrated

restoration of clinical responses in bortezomib-refractory

multiple myeloma (Richardson et al. 2013). The potential

also exists for combination of proteasome inhibitors

with other modulators of epigenetic mechanisms, such

as demethylating agents. It is intriguing that bortezomib

treatment has been shown to promote hypomethyla-

tion of genomic DNA (Liu et al. 2008). Moreover, the

demethylating agent azacytidine reduces the expression

of the multi-drug-resistance transporter MDR/P-gp, a

major mediator of bortezomib resistance (Linenberger

et al. 2001). Evaluation of proteasome inhibitors in

combination with azacytidine or decitabine is warranted.
Other promising targets in the
ubiquitin–proteasome system

As depicted in Figs 1 and 2, the degradation of proteins

via the ubiquitin–proteasome system is a multi-step and

complex process. Thus, opportunities for controlling the

degradation of proteins in cancer therapies are not limited

to targeting of the 20S catalytic core particle. Numerous

other protein and pathway nodes exist and are currently

being investigated as sites for potential therapeutic

intervention. Below, three brief examples of such efforts

are described.
Preventing p53 degradation

In view of the ability of p53 to promote either cell cycle

arrest or apoptosis, inhibition of p53 degradation in

cancer cells is an attractive strategy. Ubiquitination of

p53 is mediated by the E3 ligase HDM2. Over the past

decade, considerable effort has been invested to identify

small molecule inhibitors of HDM2 action or the

interaction between HDM2 and p53. The nutlin

compounds are the best characterized examples of this

category of inhibitors (Vassilev et al. 2004, Vassilev 2007,

Saha et al. 2013). Nutlins disrupt p53/HDM2 interactions,

thereby inhibiting p53 ubiquitination. Nutlin treatment

leads to p53 accumulation and induction of cell arrest and

apoptosis. Importantly, nutlin induction of cell cycle

arrest and/or apoptosis is restricted to cells that express

wild-type p53, supporting the mechanism of action of

these agents, but also highlighting a limitation of nutlins

(and similar inhibitors) for broad use as anti-cancer drugs.

More recently, a large number of novel HDM2 antagonists

have been identified and are undergoing preclinical

evaluation (Shen et al. 2013).
Published by Bioscientifica Ltd.
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Inhibition of neddylation

Restoration of the CDK inhibitor p27 in cancer cells has the

potential benefit of inhibiting entry into the cell cycle,

thereby slowing the growth of tumor cells. The p27 protein

is subjected to ubiquitination and proteasomal degradation

through the action of the SCFSkp2 E3 ligase protein complex.

Interestingly, activation of this complex requires conju-

gation with the ubiquitin-like polypeptide NEDD8 via a

process termed neddylation (Merlet et al. 2009). Thus,

inhibition of neddylation can be used to prevent SCFSkp2

activation and p27 loss. Similar to the activation of

ubiquitin by the E1 enzyme Ube1, nedd8 is activated by

the nedd8-activating enzyme (NAE; Soucy et al. 2010).

Soucy et al. (2009) have identified a small molecule

inhibitor of NAE called MLN4924. Treatment with

MLN4924 promotes S-phase defects, apoptosis, and growth

inhibition of solid tumor xenografts in mice (Soucy et al.

2009, Brownell et al. 2010, Milhollen et al. 2011). MLN4924

is currently undergoing early phase clinical testing.
Inhibition of Dubs

The degradation of proteins by the 20S catalytic core is

preceded by protein deubiquitination. Deubiquitination

is accomplished by the Dub family of enzymes (Fig. 3).

Roughly, 100 Dubs have been identified, with varying

substrate specificities (Fraile et al. 2012). Thus, inhibition

of selective Dubs may prove useful for altering the balance

of pro- vs anti-apoptotic proteins in the cell. Chauhan

et al. (2012) have identified the small molecule P5091 as an

inhibitor of the Dub enzyme USP7. P501 induces apoptosis

in bortezomib-refractory multiple myeloma cells and

inhibits the growth of myeloma tumors in vivo (Chauhan

et al. 2012). Recently, Tian et al. (2014) have shown that

the compound b-AP15 acts to inhibit the deubiquitinating

activity of USP14 and UCHL5, but does not impact overall

proteasome activity. b-AP15 induces cell death in multiple

myeloma cell lines and primary specimens and is able to

overcome bortezomib resistance. Moreover, b-AP15 was

shown to synergize with lenalidomide, dexamethasone,

and vorinostat, and inhibit the growth of multiple

myeloma xenograft tumors. Although early in preclinical

development, additional inhibitors of Dub enzymes have

also recently been identified (Shen et al. 2013).
Future considerations

The promise of proteasome inhibitors in the treatment of

solid tumor malignancies has yet to be realized. At present,
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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most clinical studies in solid tumors have been carried

out using bortezomib the first-generation proteasome

inhibitor. The second-generation compounds currently

under development and evaluation offer the potential

for improvements in potencies, selectivities, and other

drug-like properties. Nonetheless, it seems likely that

monotherapeutic application of proteasome inhibitors

may have only limited success in solid tumors. It will be

important to continue the development of co-treatment

strategies that simultaneously target the proteasome and

other proteins/pathways that suppress apoptosis or cell

cycle arrest. Fortunately, there are numerous opportu-

nities for co-targeting strategies, and multiple examples

of synergistic anti-cancer drug combinations have been

reported in preclinical solid tumor models. Whether such

synergism will be demonstrated in human clinical trials

warrants investigation. In addition, future studies should

continue to be aimed at developing small molecule

regulators of components of the ubiquitin–proteasome

system that are distinct from the proteasome complex.

The opportunities in this regard are tremendous, and are

currently highlighted by efforts to develop inhibitors of

the E1, E2, E3, and Dub enzymes. It is likely that targeting

of these different enzymes may achieve either pan-

inhibition or highly selective inhibition of protein

degradation, with the therapeutic value of these endpoints

yet to be determined.
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