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The 2004 Nobel Prize in Chemistry jointly awarded to

Aaron Ciechanover, Avram Hershko and Irwin Rose

celebrated the significance of their discovery that proteins

were ‘labelled for destruction’ through recognition of a

controlledmolecular ‘kiss of death’, the addition of a chain

of the 8.5 kDa (76 amino acid) protein ubiquitin.

Degradation via the ubiquitin-proteasome pathway

involves polyubiquitination of substrate proteins followed

by proteolytic degradation by the macromolecular 26S

proteasome complex. Key cancer-associated proteins

whose levels are tightly controlled by the ubiquitin-

proteasome include p53, p27, cyclins and BCL2 family

members. The enzymes involved in conjugation and

deconjugation of ubiquitin to protein substrates include

an activating ATP-dependent ubiquitin enzyme (E1), a

ubiquitin-conjugating enzyme (E2), ubiquitin-protein

ligases (E3s) that often form multi-component complexes

key for substrate recognition, and deubiquitinases (DUBs)

that cleave ubiquitin from protein substrates. In humans,

there are just a fewE1enzymes, around40E2enzymes, over

500 E3 ligases (most commonly RING and HECT domain

E3s) and around 100 DUBs, the majority belonging to the

ubiquitin-specific protease (USP) sub-family (Lipkowitz &

Weissman 2011, Budhidarmo et al. 2012, Jacq et al. 2013).

These enzymes have major regulatory roles in normal

cellular processes, both within and independently of the

ubiquitin-proteasome, including DNA repair, maintaining

genomic stability and transcription. Aberrant expression of

a number of DUBs and E3s has been linked to cancer

(Lipkowitz & Weissman 2011, Clague et al. 2013). As a

consequence, many of these enzymes are generating

extensive interest as targets for the treatment of cancer.
In his review in this special issue of Endocrine-Related

Cancer on Ubiquitination and Cancer, Johnson 2015

describes how aberrant expression of oncogenes and/or

tumour suppressors can disrupt normal cellular processes

such as cell cycle progression or apoptosis. Inhibiting

proteasomal degradation of proteins that may help to kill

cancer cells is a strategy that has led to the development

and use of first and now second generation proteasome

inhibitors. Bortezomib (Velcade) was, in 2008, the first

proteasome inhibitor approved by the US Food and Drug

Administration (FDA) for the treatment of multiple

myeloma, with the second generation inhibitor Carfilzo-

mib (Kyprolis) approved in 2012 for treatment of the same

malignancy (reviewed in Shen et al. (2013)). FDA approval

has also been given to use these drugs for the treatment of

mantle cell lymphoma. Thus far, these drugs have shown

considerable clinical benefit, although not without signi-

ficant adverse toxicity and issues of acquired resistance.

With lessons learnt from the treatment of haematological

malignancies, proteasome inhibitors are now being

explored for the treatment of solid tumours. Johnson

2015 describes emerging clinical studies of a number of

proteasome inhibitors using mono- or combinatorial

strategies (Bortezomib, Carfilzomib, MLN9708, Delanzomib,

Marizomib andOprozomib) to treat solid tumours including

breast, colorectal, pancreatic, head and neck, hepatocellular

and prostate cancers, as well as melanoma, small and non-

small cell lung carcinomas and renal cell cancers.

An alternative strategy to inhibiting the proteasome is

to move upstream to target the regulatory network of

enzymatic reactions directing conjugation and deconju-

gation of ubiquitin to protein substrates. This approach
w section on Ubiquitination and Cancer.
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offers the opportunity of achieving greater specificity with

the hope of less adverse toxicity. Both Cole et al. (2015)

and Pfoh et al. (2015), published in this issue, discuss a

number of cancer-associated E3s and DUBs. Inhibiting the

DUB USP7 is garnering extensive interest, largely due to its

effect on p53. USP7 deubiquitinates the p53 E3 ligase

HDM2, preventing its degradation via the proteasome,

thus facilitating polyubiquitination of p53 leading to

proteasomal degradation of this tumour suppressor.

Restoration of functional WT p53 could therefore

conceivably be achieved through inhibition of USP7.

Pre-clinical studies of USP7 inhibitors, including the

small molecule inhibitor P5091, have shown promise in

models ofmultiple myelomawhere this inhibitor has been

shown to overcome bortezomib resistance (Chauhan et al.

2012). Other USP7 substrates include PTEN, FOXO4 and

PRC1/INK4a (Nicholson & Suresh Kumar 2011). The effect

of USP7 inhibition in the context of mutant TP53,

including bona fide gain-of-function mutations that

stabilise the p53 protein, remains to be determined.

Numerous other DUBs have been associated with cancer,

including USP22 that is part of an 11-gene ‘Death-from-

Cancer’ signature that predicts metastatic tumour

behaviour, poor response to therapy and rapid recurrence

across multiple different solid tumours (Glinsky et al.

2005). As proteases, DUBs are realistic drug targets and are

predicted to generate extensive opportunities for future

development of novel cancer therapeutics.

While the importance of protein ubiquitination was

discovered in the context of polyubiquitination, the

addition of a single ubiquitin to specific protein substrates,

known as monoubiquitination, has also been shown to

have critical cellular functions. An example of this is

monoubiquitination of the Fanconi Anemia protein

FANCD2 in response to DNA damage that promotes

homologous recombination repair of DNA double strand

breaks (Nakanishi et al. 2005). The review by Cole et al.

focusses on another significant example of monoubiqui-

tination, specifically monoubiquitination of histone H2B

at lysine 120 (H2Bub1), referred to as a master switch for

mammalian gene regulation. Post-translational histone

modifications (methylation, acetylation, phosphory-

lation, ubiquitination etc.) are fundamental in shaping

the chromatin landscape, with key E3s referred to as

chromatin writers and DUBS as chromatin erasers, all

influencing the accessibility of chromatin for the purposes

of transcription and DNA repair (Braun & Madhani 2012).

H2Bub1 has significant roles in transcription, DNA

damage response and stem cell differentiation. Nine

DUBs, including USP7 and USP22, have to date been
http://erc.endocrinology-journals.org q 2015 Society for Endocrinology
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shown to regulate deubiquitination of H2Bub1, with the

main E3 ligase being the ring finger complex

RNF20/RNF40. The BRCA1/BARD1 complex has also

been shown to function as an E3 ligase for H2Bub1. Loss

of H2Bub1 leads to closed chromatin, inhibiting access by

transcription factors and DNA repair proteins. Global loss

of H2Bub1 has been reported in advanced malignancies,

including breast, colorectal, lung and parathyroid cancers.

The ubiquitin ligation machinery regulating H2Bub1

levels in malignancy is being considered for the develop-

ment of targeted therapies.

Ubiquitin-like proteins, such as NEDD8-reviewed in

this issue by Abidi & Xirodimas (2015), show high

homology to ubiquitin and use similar sets of enzymatic

processes. Targets of NEDDylation include the family of

cullin proteins that are scaffold proteins with roles in

regulation of the cell cycle, DNA repair, cytoskeletal

dynamics and the hypoxic response. NEDD8 inhibitors

are currently being developed and the first-in-class small

molecule inhibitor of NEDD8 activating enzyme (NAE)

MLN4924 has entered clinical trials for the treatment of

adults with non-haematological malignancies. Issues of

acquired resistance are being monitored, as well as

consideration of combinatorial strategies, including

radiation and chemotherapies.

As therapies targeting ubiquitin and ubiquitin-like

pathways for solid tumours begin to move into the clinic,

they are benefitting from strong past and ongoing dis-

coveries that are elucidating these complex networks and

the proteins they regulate, both as part of, and indepen-

dently from, theproteasome.Thesediscoverieswill bekey to

overcoming the development of resistance andminimising

adverse side effects of these new targeted cancer therapies.
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