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Abstract
Warburg’s metabolic hypothesis is based on the assumption that a cancer cell’s respiration must

be under attack, leading to its damage, in order to obtain increased glycolysis. Although this

may not apply to all cancers, there is some evidence proving that primarily abnormally

functioning mitochondrial complexes are indeed related to cancer development. Thus,

mutations in complex II (succinate dehydrogenase (SDH)) lead to the formation of pheochro-

mocytoma (PHEO)/paraganglioma (PGL). Mutations in one of the SDH genes (SDHx mutations)

lead to succinate accumulation associated with very low fumarate levels, increased gluta-

minolysis, the generation of reactive oxygen species, and pseudohypoxia. This results in

significant changes in signaling pathways (many of them dependent on the stabilization of

hypoxia-inducible factor), including oxidative phosphorylation, glycolysis, specific expression

profiles, aswell asgenomic instability and increased mutability resulting in tumordevelopment.

Although there is currently no very effective therapy for SDHx-related metastatic PHEOs/PGLs,

targeting their fundamental metabolic abnormalities may provide a unique opportunity for

the development of novel and more effective forms of therapy for these tumors.
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Introduction
In previous innovative work, Hanahan & Weinberg

(2000) determined the unique hallmarks of cancer that

together constitute a fundamental principle that provides a

logical framework for understanding the remarkable

diversity, yet nevertheless similarity, of various cancers.

Six hallmarks of cancer, namely sustaining proliferative

signaling, evading growth suppressors, activating invasion

and metastasis, enabling replicative immortality, promot-

ing angiogenesis, and resisting cell death, are the driving
forces that ultimately cause cancer cell development and

spread, leading to patient death (Hanahan & Weinberg

2000). Recently, Hanahan & Weinberg (2011) have added

two new emerging hallmarks: evading immune destruction

and reprograming energy metabolism.

Additional scientific studies have also shown that

altered energy metabolism is as widespread in cancer

cells as many of the other cancer-associated traits that

have been well accepted as the hallmarks of cancer
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(Levine & Puzio-Kuter 2010). This raises the question of

whether deregulating cellular energy metabolism could

be a core hallmark of cancer cells. In fact, redirection of

energy metabolism is largely orchestrated by proteins that

are involved in one way or another in programing the core

hallmarks of cancer. When viewed in this way, abnormal

oxidative phosphorylation (OXPHOS) is simply another

phenotype that is caused by altered oncogenes or tumor

suppressor genes (Levine & Puzio-Kuter 2010). Multiple

lines of evidence indicate that the process of tumorigen-

esis is often associated with altered metabolism. In 1926,

Otto Warburg reported that cancer cells produce most of

their ATP via ‘aerobic glycolysis’ (Warburg et al. 1926).

A significant glycolytic production of ATP despite aerobic

conditions, referred to as the Warburg effect, was found to

be the characteristic of most cancer cells (Warburg 1956).

Warburg reasoned that respiration must be damaged in

cancers because high levels of O2 are unable to suppress

the production of lactic acid by cancer cells (known as the

Pasteur effect). However, new studies have demonstrated

that tumor mitochondria are fairly functional with

regards to respiration and ATP synthesis, exhibiting

almost normal respiratory control ratios and capabilities

for the oxidation of respiratory substrates (Eakin et al.

1972, Bensinger & Christofk 2012, Krejci 2012, Nakajima

& Van Houten 2013).

Although mitochondria are fairly functional in

the majority of cancers, some cancers were found with

mutations in the genes linked to paramout mitochondrial

processes, the Krebs cycle (tricarboxylic acid cycle (TCA);

Linehan & Rouault 2013, Zhang et al. 2013) and OXPHOS.

Mitochondrial complex II, also known as succinate

dehydrogenase (SDH), is one such protein involved in

both TCA and OXPHOS. This membrane complex

catalyzes the oxidation of succinate to fumarate in TCA

and serves as an electron donor to complex III via CoQ

(Eng et al. 2003, Gottlieb & Tomlinson 2005). Succinate

oxidation results in the reduction of ubiquinone (CoQ) to

ubiquinol at the mitochondrial inner membrane as one

part of the respiration electron transfer chain (Sun et al.

2005a). SDH is composed of four subunits (SDHA–D),

all encoded by nuclear genes (Baysal 2003, 2008,

Yankovskaya et al. 2003, Sun et al. 2005b, Cascon et al.

2008). The large SDHA subunit is catalytic. The conversion

of succinate to fumarate is accomplished by SDHA

through the reduction of a flavin adenine dinucleotide, a

molecule bound to its protein moiety. This reaction is

measured as SDH activity. Electrons are then passed to

three Fe–S centers bound to SDHB, which eventually

transfers them to ubiquinone (coenzyme Q). The smaller
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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subunits, SDHC and SDHD, bind ubiquinone and anchor

the entire complex to the inner membrane of the

mitochondria (Rustin et al. 2002).

Deleterious mutations in any of the SDH genes

invariably result in decreased SDH activity or a significant

reduction or complete absence of the protein (Rustin et al.

2002, van Nederveen et al. 2009, Gill et al. 2011,

Korpershoek et al. 2011, Yang et al. 2012). Inherited

defects in particular SDH subunits in humans are

associated with variable clinical presentations ranging

from early-onset devastating encephalomyopathy to

tumor susceptibility or optic atrophy. Homozygous or

compound heterozygous mutations in SDHA cause meta-

bolic neurodegenerative disorders like congenital Leigh

syndrome and late-onset optic atrophy, ataxia, and

myopathy (Birch-Machin et al. 2000, Parfait et al. 2000,

Horvath et al. 2006, Burnichon et al. 2010, Levitas et al.

2010). Recently, Alston et al. (2012) have presented

the first patient with hypotonia and leukodystrophy due

to a novel homozygous SDHB mutation. Heterozygous

mutations in SDHA–D predispose to tumorigenesis

(Fig. 1; Maher & Eng 2002, Astuti et al. 2003, 2004, Eng

et al. 2003, Schiavi et al. 2005, Bayley et al. 2006, Benn et al.

2006, Cascon et al. 2008). The detailed molecular and

cellular mechanisms linking these latter SDH mutations

and tumorigenesis have not been fully elucidated.

Thus, consistent with Knudson’s two-hit hypothesis for

tumorigenesis, a heterozygous germline mutation in an

SDH gene is associated with a loss of the WT allele,

or other silencing mechanisms (e.g. methylation) of the

WT allele are present in a tumor (Baysal et al. 2000,

Astuti et al. 2003, 2004, Baysal 2003, 2004, 2008, Eng

et al. 2003, Gimenez-Roqueplo et al. 2003, Ni et al. 2008,

2012, Sandgren et al. 2010, Bardella et al. 2011, Killian

et al. 2013, Letouze et al. 2013) as the starting point for

tumor development. Moreover, the pathophysiology of

distinct clinical phenotypes associated with abnorma-

lities in SDH subunits remains to be determined

(Timmers et al. 2009a). Detailed knowledge about SDH

mutations is available in a database (LOVD, v.2.0 (Leiden

Open Variation Database), http://www.lovd.nl/2.0;

Bayley et al. 2005).

Although these findings led to a renewed interest

in cancer metabolism, our knowledge on the specifics of

tumor metabolism is still fragmented. Nevertheless,

multiple lines of evidence indicate that the process of

tumorigenesis is often associated with altered metabolism.

In this review, we show and discuss how mutations in SDH

subunits can lead to reprograming of cancer-related

metabolism. Also, this paper reviews recent findings
Published by Bioscientifica Ltd.
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Figure 1

The succinate dehydrogenase complex (SDH), as a member of the

tricarboxylic acid cycle (TCA), catalyzes the oxidation of succinate to

fumarate. In this reaction, two hydrogen atoms are removed from

succinate by FAD. These electrons from the reduced SDH–FADH2 complex

are then transferred to ubiquinol–ubiquinone (coenzyme Q), a soluble

component of the electron transport system of complex II. In the Q cycle,

the sequential oxidation and reduction of the lipophilic electron

carrier, coenzyme Q, generates protons that are transferred to complex III,

with the ultimate generation of ATP (complex V). Coenzyme Q, beside its

function in the respiratory chain as an electron carrier mediating electron

transfer between the various dehydrogenases and the cytochrome

pathway, also works as a powerful antioxidant in biological membranes.

Dysfunction of SDH inactivates the electron transport chain and the

Krebs cycle. A lack or suboptimal level of SDH activity will not only cause

decreased ATP production, but will also result in increased ROS with

succinate accumulation. An increase in ROS, like the accumulation of

succinate, leads to stabilization of HIFa. HIFa stabilization subsequently

activates glycolysis, cell proliferation, cell migration, invasiveness, and

angiogenesis and inhibits apoptosis. The overexpression of ROS triggers

genomic instability, oncogene activation, and tumor suppressor

inactivation. eK, electron; FAD, flavin adenine dinucleotide; FADH2,

FAD hydroquinone; ROS, reactive oxygen species; Q, ubiquinone;

QH2, ubiquinol; SDHA, B, C, and D, succinate dehydrogenase complex

subunits A, B, C, and D.
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related to key metabolites, transcription factors, and

enzymes that play an important role in the regulation

of cancer metabolism, and that blocking these metabolic

pathways or restoring altered pathways can lead to new

approaches in cancer treatment.
Pheochromocytoma and paraganglioma

Pheochromocytomas (PHEOs)/paragangliomas (PGLs) are

rare neuroendocrine tumors that produce catecholamines

(Lenders et al. 2005). PHEOs/PGLs arise from three distinct

parts of the neural crest: the adrenal medulla (PHEOs)

and the sympathetic and parasympathetic paraganglia

(extradrenal PGLs) (Papaspyrou et al. 2012).
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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One-third or more of PHEO/PGL cases have a familial

etiology (Neumann et al. 2002, Erlic et al. 2009, Gimenez-

Roqueplo et al. 2012). This group is heterogeneous with

diverse hereditary backgrounds due to germ line mutations

in 16 susceptibility genes to date. Some of these include

neurofibromatosis type 1 (NF1; Viskochil et al. 1990), the

ret proto-oncogene (RET; Mulligan et al. 1993), the von

Hippel–Lindau (VHL; Latif et al. 1993) tumor suppressor,

the SDH subunits (SDHA/B/C/D; Baysal et al. 2000,

Niemann & Muller 2000, Astuti et al. 2001, Burnichon

et al. 2010), SDH complex assembly factor 2 (SDHAF2;

Hao et al. 2009), transmembrane protein 127 (TMEM127;

Qin et al. 2010, Yao et al. 2010, Jiang & Dahia 2011), the

MAX protein (MAX; Comino-Mendez et al. 2011), kinesin
Published by Bioscientifica Ltd.
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family member 1B (KIF1B; Schlisio et al. 2008, Yeh et al.

2008), the 2-oxoglutarate (2OG)-dependent prolyl

hydroxylase enzymes (PHD2, Ladroue et al. 2008, Eltzschig

et al. 2009), isocitrate dehydrogenase 1 (IDH1; Gaal et al.

2010), and most recently hypoxia-inducible transcription

factor 2a (HIF2A; Zhuang et al. 2012, Toledo et al. 2013),

fumarate hydratase (FH; Castro-Vega et al. 2013), and

H-RAS protein (H-RAS; Crona et al. 2013). Somatic

mutations of these genes are also involved in PHEO/PGL

tumors (Burnichon et al. 2012a, Weber et al. 2012, Crona

et al. 2013, Dahia 2013). Hereditary and sporadic

PHEOs/PGLs can be divided into two groups based on

their transcription profile revealed by genome-wide

expression microarray analysis (Lopez-Jimenez et al. 2010,

Burnichon et al. 2011, Galan & Kann 2013, Vicha et al.

2013). The first group (cluster 1) includes tumors carrying

VHL and SDHx (SDHD, SDHB, SDHC, SDHA, and SDHAF2)

mutations and also accounts for about 30% of sporadic

tumors (Dahia et al. 2005, Lopez-Jimenez et al. 2010,

Burnichon et al. 2011). The second group (cluster 2)

represents tumors carrying NF1, RET, and KIF1Bb

mutations, and also includes about 70% of sporadic tumors

(Burnichon et al. 2011, Gimenez-Roqueplo et al. 2012, Shah

et al. 2012, Galan & Kann 2013). The newly discovered

TMEM127 and MAX genes are most likely associated

with cluster 2, and HIF2a with cluster 1 (Burnichon et al.

2011, 2012b, Lorenzo et al. 2012, Zhuang et al. 2012).

However, a subset of MAX-related tumors may have

impaired SDH activity, and metabolomics in these tumors

could uncover new data that could be very useful clinically

for their diagnosis (Rapizzi et al. 2012).

In cluster 1, VHL/SDHx mutations lead to impaired

degradation and accumulation of HIF1/2a and display

signatures of pseudohypoxia, angiogenesis, increased

reactive oxygen species (ROS), and reduced oxidative

response resulting in changes in cell metabolism (energy

metabolism regulation). VHL and SDH subunit mutations

distribute tumors to separate subclusters within cluster 1

(Eisenhofer et al. 2004, Dahia et al. 2005, Burnichon et al.

2009, Lopez-Jimenez et al. 2010). Cluster 2-related

PHEOs/PGLs are linked together by the activation of

kinase signaling pathways driven by oncogenes that are

involved in kinase signaling, translation, initiation,

protein synthesis, and genes involved in neural/neuroen-

docrine identity (Dahia et al. 2005, Powers et al. 2007, Yeh

et al. 2008, Burnichon et al. 2011, Jiang & Dahia 2011,

Shah et al. 2012). Cluster 1 is characterized by immature

catecholamine phenotypic features of associated tumors

(Eisenhofer et al. 2004). The immature phenotype involves

reduced or absent expression of numerous catecholamine
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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biosynthetic and secretory pathway components, mainly

phenylethanolamine N-methyltransferase, the enzyme

that converts norepinephrine to epinephrine (Eisenhofer

et al. 2011a, 2012). Also, SDH-related tumors often

produce dopamine. Thus, cluster 1 tumors can be

distinguished from cluster 2 tumors by the absence of

epinephrine production (Eisenhofer et al. 2004, 2011a,b,

Burnichon et al. 2012b, Eisenhofer et al. 2012). Most

recently, Imperiale et al. (2013) evaluated metabolic

characteristics of PHEOs/PGLs tumors, using 1H high-

resolution magic angle spinning nuclear magnetic reso-

nance (HRMAS-NMR) spectroscopy. SDHx-related tumors

were characterized by an increase in succinate levels,

significantly lower values of glutamate, and lower values

of ATP/ADP/AMP in SDHx-related tumors compared with

other subtypes. VHL tumors were found to have the

highest values of glutathione (GSH) compared with other

PHEOs/PGLs. This study showed that HRMAS-NMR

spectroscopy is a future promising method for investi-

gating the metabolomic profile of various PHEOs/PGLs.
SDH dysfunction and metabolic changes

Succinate accumulation

It is well documented that abnormal SDH function

induces an accumulation of succinate (Selak et al. 2005,

King et al. 2006, Hobert et al. 2012, Rao et al. 2013). Very

recently, Lendvai et al. (2013) showed that tissue levels of

succinate in PGLs due to SDHB/D mutations were several-

fold higher. Their results showed that the mean fumarate

concentration in SDHB-related PGLs is significantly lower

than in the apparently sporadic PHEO/PGL group. Lendvai

et al. (2013) also demonstrated a significantly increased

succinate:fumarate ratio in SDHB-related PGLs and

suggested that this ratio may be used as a new metabolic

marker for the detection of SDHB-related PHEOs/PGLs.

Thus, mass spectrometric-based measurements of succi-

nate:fumarate ratios in PHEO/PGL tumor tissue may

provide a novel method to identify patients to be tested

for SDHB/C/D mutations. The measurements could also be

useful for assessing metabolic factors responsible for

variable clinical presentations of tumors resulting from

mutations of different SDHx genes. Also, plasma organic

acid analysis may provide an effective and inexpensive

screening method to determine the presence of SDHx

mutations in the near future (Hobert et al. 2012).

The accumulation of specific metabolites has been

illustrated in different tumor models with inherited and

acquired alterations of enzymes of the TCA cycle, such as
Published by Bioscientifica Ltd.
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fumarate in cases of FH gene mutations (Isaacs et al. 2005)

and 2-hydroxyglutarate in mutations in one of the two

IDH genes (IDH1/2) (Dang et al. 2009). These findings have

important implications for our understanding of tumori-

genesis because these metabolites convey oncogenic

signals (oncometabolites; Kaelin & McKnight 2013).

Succinate that accumulates in the mitochondrial

matrix due to SDH dysfunction leaks out into the cytosol,

where it inhibits the activity of HIF1/2a PHDs (PHD1, 2,

and 3, also known as EGLN2, 1, and 3 respectively)

that hydroxylate two prolyl residues (Dann & Bruick

2005). PHDs are members of a large superfamily of

a-ketoglutarate-dependent dioxygenases. PHD action

normally requires oxygen and a-ketoglutarate as cosub-

strates and ferrous iron and ascorbate as cofactors.

(Hewitson et al. 2003, Kaelin & Ratcliffe 2008). Succinate

competes with a-ketoglutarate in binding to the PHD

enzyme. Therefore, increasing succinate levels offset the

effect of PHD activity. A lack of SDH activity inhibits

succinate–ubiquinone activity; thus, electrons that would

normally transfer through the SDHB subunit to the

ubiquinone pool are instead donated to molecular oxygen

to give a superoxide anion with a subsequent increase

in ROS production and oxidative stress. ROS exposure

also inhibits the interaction of HIFa and PHDs, similar to

the accumulation of succinate, but it is proposed that such

an inhibition of this interaction by ROS may be more

important for tumorigenesis (Yankovskaya et al. 2003,

Guzy et al. 2008, Majmundar et al. 2010). The inhibition of

the HIFa–PHD interaction leads to the stabilization of

HIFa and activation of the HIF complex (Lee et al. 2005).

HIFa regulates the transcription of a number of genes that

are known to be involved in tumorigenesis and angio-

genesis, extracellular matrix elements, and coordinated

suppression of oxidoreductase enzymes, all processes that

would be directly or indirectly regulated by the activation

of HIF1a and/or HIF2a (Dahia et al. 2005, Selak et al. 2005,

Mole et al. 2009, Favier & Gimenez-Roqueplo 2010,

Semenza 2010, 2011, 2012, Keith et al. 2012). HIF1a and

HIF2a regulate both shared and unique target genes and

pathways. The common shared targets are vascular

endothelial growth factor (VEGF), GLUT1, GLUT3, and

hexokinase 2 (HK2). HIF1a exclusively stimulates the

expression of several glycolytic enzymes, whereas the

embryonic transcription factors Oct4, cyclin D1, platelet-

derived growth factor, and erythropoietin are activated in

a HIF2a-dependent manner (Fig. 2; Rankin et al. 2007,

Patel & Simon 2008, Furlow et al. 2009, Florczyk et al.

2011, Koh et al. 2011, Franke et al. 2013, Singh et al. 2013).

The differential effects of these two transcription factors
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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in numerous cellular systems are now well established

and reviewed, including their link to the pathogenesis of

PHEO and PGL (Holmquist-Mengelbier et al. 2006, Koh

et al. 2011, Branco-Price et al. 2012, Chiavarina et al. 2012,

Keith et al. 2012, Semenza 2012, Jochmanova et al. 2013).

Despite the fact that Pollard et al. (2005, 2006) found

relatively more common HIF2a overexpression in VHL

PHEOs and PGLs, whereas in SDHx-related tumors nuclear

HIF1a staining was more prominent, Gimenez-Roqueplo

et al. (2001, 2002) described overexpression of HIF2a and

VEGF in patients with PHEOs and PGLs carrying SDHB

and SDHD mutations compared with sporadic PHEOs and

PGLs, and Favier et al. (2009) found overexpression of

HIF2a mRNA in both VHL and SDH-related PHEO and

PGL. Also, Eisenhofer et al. (2004) and Koh et al. (2011)

support the leading role of HIF2a in the tumor develop-

ment and progression in cluster 1 tumors as well as their

unique noradrenergic phenotype (Jochmanova et al.

2013). The important role of HIF2a in various develop-

mental issues is also supported by previous observations

performed in fetal paraganglia and neuroblastoma

(Tian et al. 1998, Favier et al. 1999, Nilsson et al. 2005,

Jochmanova et al. 2013).

Similarly, the mechanism of PHD inhibition by

succinate is likely to extend to other numbers of a large

superfamily of a-ketoglutarate-dependent dioxygenases.

One of them is the factor inhibiting HIF, which normally

hydroxylates HIF1a on the asparagine 803 residue. This

blocks its interaction with the coactivators histone

acetyltransferase p300 (p300) and cAMP-response

element-binding protein under normoxic conditions

(Mahon et al. 2001, Lando et al. 2002) and thus inhibits

the transactivation of HIF target genes (Khan et al. 2011,

Cascon & Tennant 2012). Also, SDHx mutations inhibit

the activity of the jumonji-domain ( JmjC) histone

demethylases (Cervera et al. 2009, Xiao et al. 2012).

These enzymes use a-ketoglutarate to remove the methyl

groups found on arginines and lysines of histones H3 and

H4 (Agger et al. 2008). SDHx mutations decrease histone

demethylase activity (specifically the JMJD3 demethylase)

and lead to increased methylation of histone H3

(H3K27me3) (Cervera et al. 2009). Similarly, very recently

Letouze et al. (2013) showed that increased tumor levels of

succinate lead to DNA hypermethylation, a process

causing global changes in gene expression as a critical

tumorigenic mechanism. These modulations in the

pseudohypoxic signature observed in SDHx-related tumors

can distinguish the gene expression phenotypes observed

in the two subgroups of tumors in cluster 1.
Published by Bioscientifica Ltd.
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Figure 2

Different mechanisms have been proposed to explain the link between

SDHx mutations and tumorigenesis. First, the loss of function of SDH causes

an accumulation of succinate and the overproduction of ROS. Second,

inactivation or dysfunction of SDH inhibits the activity of HIFa PHDs.

Inhibition of PHDs results in an insufficient hydroxylation of HIF1/2a.

The unhydroxylated HIF1/2a protein cannot be degraded by the

proteasome, and HIF1/2a is stabilized. This stabilization can be overcome

by a-ketoglutarate. VHL mutations result in similar inadequate HIF1/2a

proteasome degradation and HIF1/2a stabilization. The stabilization of

HIF1a rather than HIF2a increases glycolysis (due to overexpression of some

glycolytic enzymes) and can regulate glutaminolysis. HIF2a stabilization

is involved in the direct or indirect activation of a number of genes that

are known to be involved in the inhibition of apoptosis, tumorigenesis,

and angiogenesis. The stabilization of HIF1/2a leads to an upregulation

of HIF-related genes due to binding to HREs and to an overexpression

of hypoxia-related genes. Increased ROS accumulation results in oxidative

DNA damage and genomic instability and inhibits PHDs, similarly to the

accumulation of succinate. Increasing activity of complex I, III, and IV may

be a compensatory reaction to a lack of, or decreased, complex II activity in

SDHx-related tumors. ABL2, ABL2 protein tyrosine-protein kinase; CCDN1,

cyclin D1; DLL4, delta-like protein 4; EPO, erythropoietin; GLUTs, glucose

transporters; HIF, hypoxia-inducible factor; HREs, hypoxia-responsive

elements; LDH-A, lactate dehydrogenase A; OXPHOS, oxidative

phosphorylation; PDGF, platelet-derived growth factor; PHDs, prolyl

hydroxylases; PKM2, pyruvate kinase muscle isozyme 2; POU5F1 OCT4,

POU domain, class 5, tarnscription factor 1 isoform; pVHL, protein of the

von Hippel–Lindau tumor suppressor gene; ROS, reactive oxygen species;

SDH, succinate dehydrogenase; Ub, ubiquitin; VEGF, vascular endothelial

growth factor.
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Reactive oxygen species

A lack of SDH activity results in increases in steady-state

levels of O2
K to H2O2 that could then form more powerful

oxidants, such as hydroxyl radicals, through Haber–Weiss-

driven Fenton chemistry as well as organic hydroperoxides

capable of causing chronic metabolic oxidative stress

(Slane et al. 2006, Spitz 2011, Owens et al. 2012). Chronic

ROS exposure can result in oxidative damage to mito-

chondrial and cellular proteins, lipids, and nucleic acids.
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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These normoxic ROS accelerate the DNA-damaging

processes as a ‘mutator phenotype’, causing genomic

instability, as well as an increase in glucose consumption

and sensitivity to glucose deprivation-induced toxicity

and slower growth rates. ROS are also involved in Ras–Raf–

MEK signaling. Ras–Raf–MEK signaling activation causes

the mediation of protection against apoptotic cell death

induced by increased oxidative stress ( Jiang et al. 2005).

The activity of the ROS-generating enzyme Nox1 is
Published by Bioscientifica Ltd.

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-13-0398


E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review A Vicha et al. SDHx-related cancers and
energy metabolism

21 :3 R267
required for VEGF, a potent stimulator of tumor angiogen-

esis (Rustin et al. 2002, Dudkina et al. 2005, Slane et al.

2006, Pan et al. 2009). Fliedner et al. (2012) detected

elevated superoxide dismutase 2 expression in SDHB-

derived PHEOs/PGLs that is an indirect evidence for

increased ROS production and may reflect elevated

oxidative stress.
Warburg effect

A lack of SDH activity and consequent other changes

lead to the Warburg effect in SDHx-related tumors. Because

metabolic control over the glycolytic rate can be applied

at many steps in the glycolytic pathway (Dang et al. 1997,

Gatenby & Gillies 2004), most studies in cancer support

the hypothesis that control over glycolytic flux primarily

resides at the transport and phosphorylation steps

(upregulation of glucose transporters (notably GLUT1

and GLUT3) and HK2; Gatenby & Gillies 2004, Mathupala

et al. 2009, Choi et al. 2013). HIFa enhances the glycolytic

pathway by increasing target gene expression from

GLUT1, GLUT3, through HK2 and pyruvate kinase variant

M2 (PKM2) to lactate dehydrogenase-A (LDH-A) and

other glycolytic and anabolic enzymes and metabolites

(Osthus et al. 2000, Soga 2013). Some expression studies

have not found the overexpression of GLUT1 in SDHx-

related tumors (Favier et al. 2009, Lopez-Jimenez et al.

2010, Fliedner et al. 2012). Moreover, increased expression

of GLUT3 and HK2 mRNAs observed in SDHx-related

tumors (Favier et al. 2009, Fliedner et al. 2012) can explain

the high sensitivity of [18F]-FDG PET for SDHx-related

tumors, mainly observed in SDHB-related PHEOs/PGLs

(Timmers et al. 2007, 2009b, 2012, Zelinka et al. 2008,

Taieb et al. 2009). Fliedner et al. (2012) detected the M2

isoform of PKM2 mRNA, which appeared to be possibly

elevated in SDHB-mutant tumors. PKM2 is generated by

increased transcription and alternative splicing of the

PKM2 gene through a HIF1a and c-Myc-mediated process.

PKM2 catalyzes the final and also rate-limiting reaction in

the glycolytic pathway and promotes tumorigenesis by

regulating the Warburg effect. PKM2 also possesses a

positive feedback regulation toward HIF1a. PKM2 interacts

with HIF1a in the nucleus and functions as a transcrip-

tional coactivator to enhance the expression of HIF1a

target genes that promote the shift from OXPHOS to

glycolytic metabolism (Luo & Semenza 2011, 2012, Luo

et al. 2011). Also, overexpression of LDH-A has been found

in SDHx-related tumors (Favier et al. 2009, Fliedner et al.

2012). In proliferating cancer cells, the majority of the

pyruvate generated from glucose (O90%) is converted to
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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lactate by LDH-A, where it is readily secreted into the

extracellular environment. By converting pyruvate to

lactate, LDH-A recovers the NADC needed to maintain

glycolysis and ATP production. This step is critical for the

maintenance of tumor proliferation in vivo (Fantin et al.

2006, Jones & Thompson 2009). LDH-A may be upregu-

lated by a high glycolytic flux through the carbohydrate-

response elements (ChoREs) by binding HIF or myc

products (Semenza 2002a,b, Walenta & Mueller-Klieser

2004). Moreover, both LDH-A and mitochondria activity

are mutually regulated at the level of metabolites. They

depend on the availability of pyruvate and on the

NADH:NADC ratio. The generation of lactate and the

export of intracellular acid lead to an acidic tumor

microenvironment, which is correlated with a poor

prognosis and may facilitate tumor invasion and metas-

tasis leading to the stimulation of cell migration and

angiogenesis (Chiche et al. 2010, Vegran et al. 2011). Thus,

activation of HIFa, c-myc, and other proteins stimulates

many processes that result in the Warburg effect in these

tumors (Vogelstein & Kinzler 2004, Deberardinis et al.

2008, Yuneva 2008, Jones & Thompson 2009, Gogvadze

et al. 2010, Levine & Puzio-Kuter 2010, Cairns et al. 2011,

Koppenol et al. 2011).
Glutamine metabolism

Tannahill et al. (2013) showed a dysfunctional TCA cycle

pointed toward an alternative source of succinate. The

microarray study showed a significantly higher concen-

tration of glutamine transporter SLC3A2 mRNA. Thus,

substantial increases in succinate accumulation have been

demonstrated through processes involving increased

import and metabolism of glutamine (Tannahill et al.

2013). Therefore, we suggest that glutamine metabolism

can be involved in SDHx-related tumors. Succinate can

be derived from glutamine through anaplerosis by

a-ketoglutarate. Recently, Imperiale et al. (2013) found

significantly lower values of glutamate in SDHx-related

tumors compared with other subtypes. These catabolic

pathways are reversible and involve the removal of

nitrogen as part of the mechanism that regulates nitrogen

homeostasis; the carbon skeleton from glutaminolysis

may eventually enter anabolic or anaplerotic processes

(including the formation of nucleotides, lipids, and

proteins; Yuneva 2008, Dang 2010, Eng & Abraham 2010).

Meng et al. (2010) observed that nitrogen source

restriction repressed carbon metabolic pathways, includ-

ing glucose utilization. Therefore, the interconversion

between glutamine and a-ketoglutarate serves as the
Published by Bioscientifica Ltd.
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bridge connecting nitrogen and carbon metabolism.

Thus, glutaminolysis and the Warburg effect become two

integral parts of the cellular machinery to balance the

carbon and nitrogen metabolism. Glutaminolysis also

supports the production of molecules, such as GSH and

NADPH, which protect cells from oxidative stress.
OXPHOS proteins

OXPHOS proteins include the electron transport chain

components, ATP synthase, and the adenine nucleotide

translocator. Information about other OXPHOS proteins

besides complex II in SDHx-related tumors is limited.

Favier et al. (2009) suggested a lower expression of

OXPHOS protein complexes I–IV in SDHx- and VHL-

related tumors than in PHEOs/PGLs harboring NF1 and

RET mutations, but complex V expression was relatively

similar in all patients. Also, the activity of complexes II, III,

or IV was found to be decreased in SDHx- and VHL-related

PHEOs/PGLs, but the differences were smaller for

complexes III and IV. In contrast, other groups showed

that the activity of SDH or respiratory chain enzyme

complex II is low in SDHx-related tumors and associated

with increased activities of respiratory chain complexes I,

III, and IV and citrate synthase. All these factors suggest a

compensatory response to the lack of SDH activity

(Fliedner et al. 2012, Rao et al. 2013). However, as shown

by Rao et al. (2013), the apparently increased activity of

complex I, III, IV, and citrate synthase in the SDHx-related

tumors does not lead to a full restoration of ATP/AD-

P/AMP, because the concentration of ATP/ADP/AMP was

consistently very low in all SDHx-related tumors. Rao et al.

found positive relationships between mitochondrial

complex II function, tumor ATP/ADP/AMP content, and

tumor catecholamine contents, and suggested the possi-

bility that differences in energy metabolism might also

contribute to the lower tumor tissue catecholamine

contents in cluster 1 than in cluster 2 tumors. Thus,

increased activity of complex I, III, and IV may be a

compensatory reaction to a lack of or decreased complex II

activity in these tumors.

Thus, the generation of ROS as well as pseudo-

hypoxia and succinate accumulation results in significant

changes in key pathways: HIF, glycolysis, angiogenesis,

genomic instability, increased cell cycle, and increased

mutability.

In summary, increased ROS production has been

suggested to contribute to tumorigenesis in SDHB-related

tumors (Guzy et al. 2008, Goffrini et al. 2009, Huang &

Lemire 2009). SDHx mutation-induced increases in ROS
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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have recently been shown to cause genomic instability

that may contribute to tumorigenesis (Slane et al. 2006,

Owens et al. 2012). Second, accumulation of succinate

leads to widespread changes, from stabilization of HIFa

through inhibition of PHD to DNA hypermethylation,

a process causing global changes in gene expression.

This accumulation of succinate accompanies low fumarate

in malignant SDHB tumors. This high succinate:fumarate

ratio can be used as a predictor of malignancy in the

future. Third, the specific catecholamine phenotype in

SDHx-related tumors may be due to downregulation of

HIF1a and upregulation of HIF2a. Fourth, not only

glycolysis but also glutaminolysis may be involved in

SDHx-related tumors.
Future treatment options to attack metabolic
alterations in SDHx-related tumors

Understanding specific metabolic alterations charac-

teristic and unique to SDHx-related PHEOs/PGLs and

increasing availability and implementation of molecular

profiling and metabolomics in clinical medicine opens

new promising options for the use of multiple and

personalized metabolic-specific molecular-targeted thera-

pies in the near future, as originally suggested by Eng et al.

(2003). Several key events involved in the pathogenesis

of SDHx-related PHEOs/PGLs have been described, such

as i) an increase in ROS production resulting in oxidative

stress and stabilization of HIF1/2a and ii) accumulation

of succinate which inhibits 2OG-dependent dioxygenases

and causes hypermethylated and pseudohypoxic pheno-

types. Identification of subgroups of specific molecular-

metabolic phenotypes may be especially useful in

personalized medicine. Furthermore, targeted therapies

hold promise for the treatment of metastatic SDHx-related

tumors. Thus, although outlined below separately, these

approaches are viewed as tightly interconnected and

should be combined when appropriate treatments or

knowledge are available.
Restoration of SDH activity

An increase in the expression and stabilization of SDH

proteins is crucial to prevent various metabolic dysregula-

tions resulting from the absence of SDHB protein and

therefore dysfunctional mitochondrial complex II in

SDHx-related tumors. An increase in the expression and

stabilization of SDH proteins is crucial to prevent various

metabolic dysregulations resulting from the absence of

SDHB protein and therefore dysfunctional mitochondrial
Published by Bioscientifica Ltd.
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complex II in SDHx-related tumors. Recently, Yang and

colleagues demonstrated that the loss of SDHB function

was due to a reduced half-life of mutant protein by rapid

proteasome degradation. The authors found that histone

deacetylase inhibitors (HDACi) inhibited proteasome

degradation of SDHB-mutated protein resulting in its

increased stabilization and activity (Yang et al. 2012).

However, this approach, although of interest in the near

future, cannot be applied to patients with nonsense SDHx

mutations or SDHx gene deletions, because no protein is

generated and the second allele is missing by the

mechanism of loss of heterozygosity. Furthermore, it is

expected that this approach will only partially increase the

availability of mutated (and still dysfunctional) protein

that will only improve mitochondrial function to a certain

degree leading to persistent metabolic dysregulations

(although to a lesser degree). Therefore, this therapy

most likely will need to be combined with other

therapeutic approaches.
Restoration of PHD activity

As described in our study, both succinate and

ROS contribute to the inactivation of PHD and sub-

sequent stabilization of the HIF1/2a signaling pathway.

PHD action normally requires oxygen and a-ketoglutarate

as co-substrates. PHD inactivation by succinate is com-

petitive with a-ketoglutarate. Therefore, increasing the

a-ketoglutarate:succinate ratio levels by treatment with

a-ketoglutarate derivatives could critically affect PHD

activity and decrease the stabilization of HIF1/2a

(MacKenzie et al. 2007, Tennant et al. 2009, Jokilehto &

Jaakkola 2010). Furthermore, esterified a-ketoglutarate

induces apoptosis and inhibits tumor growth. These effects

are independent of HIFa but dependent on the presence

of PHD3 (Tennant & Gottlieb 2010).

Direct activation of PHD by the activator KRH102053

increases HIF1/2a hydroxylation and promotes its

degradation (Choi et al. 2008, Nepal et al. 2011). Targeting

HIF1/2a with their specific inhibitors (e.g. currently by

either the direct inhibitor PX-478 or the indirect inhibitor

PX-12; both targeted to HIF1a) has shown antitumoral

activity in human tumor xenografts in mice and also

seems to be promising for malignant PHEO/PGL (Welsh

et al. 2003, 2004, Semenza 2007). However, currently there

are no HIF2a inhibitors that would be preferable in the

treatment of SDHx-related PHEO/PGL. Nevertheless, it is

expected that these compounds will be introduced in the

near future (Rogers et al. 2013).
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Prevent ROS damage

A rationale for using antioxidants in HIF1/2a-driven

tumors was recently provided by Gao et al. (2007), who

examined the antitumorigenic effect of the antioxidant

NAC. They reported that NAC treatment resulted in

reduced HIF1a expression and inhibition of in vivo tumor

formation in a HIF-driven model of tumorigenesis. Ni &

Eng (2012) concluded that the lipid-soluble antioxidant

a-tocopherol can selectively protect SDHxvarC cells from

oxidative damage and apoptosis resistance and rebalance

the redox metabolites, NAD/NADH, which is a promising

opportunity to prevent the development of tumors in

patients with SDHx mutations. This concept is very

unique, introducing prevention for the first time in the

treatment of SDHx carriers. Thus, a-tocopherol, ascorbic

acid, and HDACi could be administered over a long period

and could serve as a novel therapeutic paradigm for

preventing the development of SDHx-related PHEOs/PGLs

(Ni & Eng 2012, Yang et al. 2012).
Heat shock protein 90 inhibitors

Malignant SDHx-related PHEO/PGL overexpresses heat

shock protein 90 (HSP90), a molecular chaperone that

assists in binding to HIF1/2a and promotes its stability by

preventing ubiquitination and proteasomal degradation of

HIF1/2a (Liu et al. 2007, Mahalingam et al. 2009, Semenza

2010). Thus, inhibitors of HSP90, such as geldanamycin,

and analogs, such as 17-allylamino geldanamycin

(17-AAG; tanespimycin), 17-dimethylaminoethylamino-

17-demethoxygeldanamycin (alespimicin), or other new

analogs, are promising therapeutic agents (Isaacs et al.

2002, Northcott et al. 2012). Giubelino et al. (2013)

demonstrated the potent inhibition of proliferation and

migration of PHEO cell lines and induced degradation of

key Hsp90 clients by 17-AAG and ganetespib. They also

showed the efficacy of 17-AAG and ganetespib in reducing

metastatic burden and increasing survival in metastatic

model of PHEO (Giubellino et al. 2013).
Glycolysis inhibition

In addition, when the TCA cycle is genetically compro-

mised, as is the case in SDHx-related PHEO/PGL, glycolytic

addiction of the tumor cells is ensured. These tumors

are ‘glucose addicts’ as revealed by their almost 100% of

positivity on [18F]-FDG PET. This may prove to be an

Achilles’ heel of these tumors. Thus, strategies disrupting

glycolytic mechanisms can be used in the future.
Published by Bioscientifica Ltd.
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A small-molecule inhibitor of GLUT1, such as

WZB117 or STF-31, downregulates glycolysis and inhibits

cancer cell growth in vitro and in vivo (Chan et al. 2011, Liu

et al. 2012). In addition, dichloroacetate (DCA) and

3-bromopyruvate reverse cancer-specific aerobic glycolysis

(Michelakis et al. 2008, Cardaci et al. 2012, El Sayed et al.

2012, Kluza et al. 2012, Kumar et al. 2012, Matsushita et al.

2012, Sutendra & Michelakis 2013, Sutendra et al. 2013).

DCA downregulates pyruvate dehydrogenase kinase,

which, under normal conditions, upregulates the

glycolysis enzyme pyruvate dehydrogenase (Michelakis

et al. 2008, Kluza et al. 2012, Kumar et al. 2012, Sutendra &

Michelakis 2013, Sutendra et al. 2013), shifting metab-

olism from glycolysis to glucose oxidation and selectively

inducing apoptosis in cancer cells (Xie et al. 2011).

Furthermore, inhibitors of HK2 (Pedersen 2012, Yu et al.

2012) may also represent a novel therapeutic approach to

malignant SDHx-related PHEO/PGL.
Disruption of pH regulators

In addition, activation of the HIF1a pathway enhances

glycolytic metabolism and generates increased amounts of

lactic and carbonic acids. This poses considerable cellular

stress and requires a continuous regulation by several

pH-regulating systems. It has been shown that disruption

of these proteins may provide an effective avenue for

future targeted therapies in different cancer models (Parks

et al. 2013). However, several studies have shown a

predominant expression of HIF2a over HIF1a in SDH-

related tumors (Eisenhofer et al. 2004, Favier et al. 2009,

Jochmanova et al. 2013), suggesting a leading role for

HIF2a in SDHx-related tumorigenesis. Thus, the identifi-

cation of subgroups of patients with preferential or

combined activation of HIF1a or HIF1/2a, respectively,

would help in the development of ‘personalized’

approaches in this type of therapy. In these patients,

disrupting pH-regulating capacities and the export of

lactic acid from tumor cells (by disrupting monocarbox-

ylate transporters (MCTs)) could reduce glycolysis and

growth rates. Additional strategies could be developed by

disrupting glycolytic mechanisms.
Disruption of alternative signaling pathways

Additional treatment strategies could target abnormally

functioning pathways, possibly in conjunction with

targeting metabolic pathways. For example, the pseudo-

hypoxic response and abnormal energy status of tumor

cells activate kinase signaling pathways such as
http://erc.endocrinology-journals.org q 2014 Society for Endocrinology
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PI3kinase/AKT, RAS/RAF/ERK, and mTOR1/p70s6K,

which leads to abnormal cell growth and a lack of

apoptotic capacity (Abraham & Eng 2010, Choo et al.

2010, Nolting & Grossman 2012). Favier et al. (2012)

showed that the mTOR pathway was potentially activated

in half of PHEO/PGLs. Nolting et al. (2012) showed that

combination treatment with dual NVP-BEZ235 (a PI3K/

mTORC1 inhibitor) and lovastatin (an inhibitor of ERK

signaling) had a significant additive effect in mice

PHEO MPC and MTT cells and resulted in the inhibition

of both AKT and mTORC1/p70S6K signaling without ERK

upregulation. However, recently, Ghayee et al. (2013)

suggested that the use of mTOR inhibitors alone for

metastatic SDHB PHEOs/PGLs may not achieve good

therapeutic efficacy in these patients.
Summary

Recent advances and insights into SDHx-related

PHEOs/PGLs as tumors with significant changes in their

metabolism may lead to major advances in the treatment

of these tumors.
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